Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1985 Aug 26;13(16):5949–5963. doi: 10.1093/nar/13.16.5949

UV irradiation of nucleic acids: formation, purification and solution conformational analysis of the '6-4 lesion' of dTpdT.

R E Rycyna, J L Alderfer
PMCID: PMC321925  PMID: 4034399

Abstract

Irradiation of dTpdT with 300 kJ/m2 of 254 nm produces numerous photo-products, one of which labeled dT6pd4T[1] was purified by HPLC. dT6pd4T has a UV spectrum (H20, pH 7) with lambda max = 326 nm and lambda min = 265 nm, and a P-31 NMR resonance at -3.46 ppm (normal dTpdT occurs at -4.01 ppm; TMP, 30 degrees C). 2-D COSY NMR spectra facilitated proton resonance assignments and 2-D NOESY spectra aided analysis of spatial orientation. Carbon-13 and proton-coupled P-31 NMR spectra of dT6pd4T were also obtained. These analyses indicate: C5=C6 of dT6p- is saturated and the -pd4T base is more aromatic; the dT6p- base possesses a configuration of 5R, 6S; dT6p- and -pd4T have anti-type glycosidic conformations; furanose conformation of dT6p- is mainly C3'-endo and that of -pd4T exists in a C3'-endo in equilibrium C3'-exo; exocyclic bonds gamma (C5'-C4'), beta (05'-C5') and epsilon (C3'-03') are non-classical rotamers; dihedral angle about epsilon (C3'-03') is smaller relative to dTpdT.

Full text

PDF
5949

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alderfer J. L., Loomis R. E., Zielinski T. J. Fluorinated nucleic acid constituents: a carbon-13 nuclear magnetic resonance study of adenosine, cytidine, uridine, and their fluorinated analogues. Biochemistry. 1982 May 25;21(11):2738–2745. doi: 10.1021/bi00540a025. [DOI] [PubMed] [Google Scholar]
  2. Alderfer J. L., Ts'o P. O. Conformational properties of the furanose phosphate backbone in nucleic acids. A carbon-13 nuclear magnetic resonance study. Biochemistry. 1977 May 31;16(11):2410–2416. doi: 10.1021/bi00630a016. [DOI] [PubMed] [Google Scholar]
  3. Altona C., Sundaralingam M. Conformational analysis of the sugar ring in nucleosides and nucleotides. Improved method for the interpretation of proton magnetic resonance coupling constants. J Am Chem Soc. 1973 Apr 4;95(7):2333–2344. doi: 10.1021/ja00788a038. [DOI] [PubMed] [Google Scholar]
  4. Brash D. E., Haseltine W. A. UV-induced mutation hotspots occur at DNA damage hotspots. Nature. 1982 Jul 8;298(5870):189–192. doi: 10.1038/298189a0. [DOI] [PubMed] [Google Scholar]
  5. Cadet J., Ducolomb R., Hruska F. E. Proton magnetic resonance studies of 5,6-saturated thymidine derivatives produced by ionizing radiation. Conformational analysis of 6-hydroxylated diastereoisomers. Biochim Biophys Acta. 1979 Jun 20;563(1):206–215. doi: 10.1016/0005-2787(79)90021-2. [DOI] [PubMed] [Google Scholar]
  6. Cheng D. M., Sarma R. H. Intimate details of the conformational characteristics of deoxyribodinucleoside monophosphates in aqueous solution. J Am Chem Soc. 1977 Oct 26;99(22):7333–7348. doi: 10.1021/ja00464a038. [DOI] [PubMed] [Google Scholar]
  7. Davies D. B., Danyluk S. S. Nuclear magnetic resonance studies of 5'-ribo- and deoxyribonucleotide structures in solution. Biochemistry. 1974 Oct 8;13(21):4417–4434. doi: 10.1021/bi00718a027. [DOI] [PubMed] [Google Scholar]
  8. Franklin W. A., Lo K. M., Haseltine W. A. Alkaline lability of fluorescent photoproducts produced in ultraviolet light-irradiated DNA. J Biol Chem. 1982 Nov 25;257(22):13535–13543. [PubMed] [Google Scholar]
  9. Giessner-Prettre C., Pullman B. On the conformational dependence of the proton chemical shifts in nucleosides and nucleotides. I. Proton shifts in the ribose ring of pyrimidine nucleosides as a function of the torsion angle about the glycosyl bond. J Theor Biol. 1977 Mar 7;65(1):171–188. doi: 10.1016/0022-5193(77)90082-0. [DOI] [PubMed] [Google Scholar]
  10. Greenstock C. L., Johns H. E. Photosensitized dimerization of pyrimidines. Biochem Biophys Res Commun. 1968 Jan 11;30(1):21–27. doi: 10.1016/0006-291x(68)90706-7. [DOI] [PubMed] [Google Scholar]
  11. JOHNS H. E., PEARSON M. L., LEBLANC J. C., HELLEINER C. W. THE ULTRAVIOLET PHOTOCHEMISTRY OF THYMIDYLYL-(3'-5')-THYMIDINE. J Mol Biol. 1964 Aug;9:503–524. doi: 10.1016/s0022-2836(64)80223-0. [DOI] [PubMed] [Google Scholar]
  12. Karle I. L. Crystal structure of a thymine-thymine adduct from irradiated thymine. Acta Crystallogr B. 1969 Oct 15;25(10):2119–2126. doi: 10.1107/s056774086900522x. [DOI] [PubMed] [Google Scholar]
  13. Karle I. L., Wang S. Y., Varghese A. J. Crystal and molecular structure of a thymine-thymine adduct. Science. 1969 Apr 11;164(3876):183–184. doi: 10.1126/science.164.3876.183. [DOI] [PubMed] [Google Scholar]
  14. Kućan Z., Waits H. P., Chambers R. W. Acetone-sensitized photochemistry of some pyrimidine dinucleoside phosphates. Biochemistry. 1972 Aug 15;11(17):3290–3295. doi: 10.1021/bi00767a026. [DOI] [PubMed] [Google Scholar]
  15. Lankhorst P. P., Haasnoot C. A., Erkelens C., Altona C. Carbon-13 NMR in conformational analysis of nucleic acid fragments. 2. A reparametrization of the Karplus equation for vicinal NMR coupling constants in CCOP and HCOP fragments. J Biomol Struct Dyn. 1984 Jun;1(6):1387–1405. doi: 10.1080/07391102.1984.10507527. [DOI] [PubMed] [Google Scholar]
  16. Pearson M. L., Ottensmeyer F. P., Johns H. E. Properties of an unusual photoproduct of U.V. irradiated thymidylyl-thymidine. Photochem Photobiol. 1965 Sep;4(4):739–747. doi: 10.1111/j.1751-1097.1965.tb07916.x. [DOI] [PubMed] [Google Scholar]
  17. Varghese A. J., Wang S. Y. Thymine-thymine adduct as a photoproduct of thymine. Science. 1968 Apr 12;160(3824):186–187. doi: 10.1126/science.160.3824.186. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES