Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1985 Sep 11;13(17):6155–6170. doi: 10.1093/nar/13.17.6155

Poly(dAT) dependent trinucleotide synthesis catalysed by wheat germ RNA polymerase II. Effects of nucleotide substrates and cordycepin triphosphate.

J Dietrich, M Teissere, C Job, D Job
PMCID: PMC321944  PMID: 4047941

Abstract

Kinetics of condensation of ribonucleotides to dinucleotides, leading to trinucleotide products formation, have been studied using wheat germ RNA polymerase II and poly(dAT). Assay conditions can be selected under which both ApUpA and UpApU are formed in catalytic amounts. The kinetic parameters associated with these reactions indicate that the rate of trinucleotide formation might be affected by DNA sequence, as reported for E.coli RNA polymerase. Kinetics of disappearance of ApUpA and UpApU were studied under experimental conditions allowing poly(rAU) synthesis. The results can be interpreted as if after formation of a phosphodiester bond, a slow isomerisation step of the ternary transcription complex could occur. During this step, transcription complexes could dissociate with a finite probability, releasing trinucleotides in an abortive pathway. The above results are discussed in the view that, under these experimental conditions, wheat germ RNA polymerase II catalyses poly(rAU) synthesis, as if it is a non-processive enzyme. Cordycepin triphosphate can be condensed to a dinucleotide primer, yielding ApUpA. However the ATP analogue cannot be incorporated into longer products than a trinucleotide. On the other hand 3'-dATP behaves as a very potent inhibitor of translocation, with an inhibition constant of 0.15 microM, a value which is two orders of magnitude smaller than the Km value corresponding to ATP utilization in poly(rAU) synthesis. Simple models are proposed which allow a comparison with E.coli RNA polymerase, for which the results are well documented.

Full text

PDF
6155

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ackerman S., Bunick D., Zandomeni R., Weinmann R. RNA polymerase II ternary transcription complexes generated in vitro. Nucleic Acids Res. 1983 Sep 10;11(17):6041–6064. doi: 10.1093/nar/11.17.6041. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Carpousis A. J., Gralla J. D. Cycling of ribonucleic acid polymerase to produce oligonucleotides during initiation in vitro at the lac UV5 promoter. Biochemistry. 1980 Jul 8;19(14):3245–3253. doi: 10.1021/bi00555a023. [DOI] [PubMed] [Google Scholar]
  3. Cooke R. M., Penon P., Got C., Miassod R. Selective transcription of a cloned cauliflower mosaic virus DNA fragment in vitro by soybean RNA polymerase II in the presence of dinucleotide primers. Eur J Biochem. 1983 Dec 1;137(1-2):365–371. doi: 10.1111/j.1432-1033.1983.tb07837.x. [DOI] [PubMed] [Google Scholar]
  4. Durand R., Job C., Teissère M., Job D. Non-processive transcription of poly[d(A-T)] by wheat germ RNA polymerase II. FEBS Lett. 1982 Dec 27;150(2):477–481. doi: 10.1016/0014-5793(82)80793-x. [DOI] [PubMed] [Google Scholar]
  5. Durand R., Job C., Zarling D. A., Teissère M., Jovin T. M., Job D. Comparative transcription of right- and left-handed poly[d(G-C)] by wheat germ RNA polymerase II. EMBO J. 1983;2(10):1707–1714. doi: 10.1002/j.1460-2075.1983.tb01646.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gralla J. D., Carpousis A. J., Stefano J. E. Productive and abortive initiation of transcription in vitro at the lac UV5 promoter. Biochemistry. 1980 Dec 9;19(25):5864–5869. doi: 10.1021/bi00566a031. [DOI] [PubMed] [Google Scholar]
  7. Grossmann K., Seitz H. U. Cooperative effects of RNA polymerase from higher plant cells and Escherichia coli: a comparison. FEBS Lett. 1980 Jul 28;116(2):193–195. doi: 10.1016/0014-5793(80)80641-7. [DOI] [PubMed] [Google Scholar]
  8. Grossmann K., Seitz U. RNA polymerase I from higher plants. Evidence for allosteric regulation and interaction with a nuclear phosphatase activity controlled NTP pool. Nucleic Acids Res. 1979 Dec 11;7(7):2015–2029. doi: 10.1093/nar/7.7.2015. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hansen U. M., McClure W. R. Role of the sigma subunit of Escherichia coli RNA polymerase in initiation. II. Release of sigma from ternary complexes. J Biol Chem. 1980 Oct 25;255(20):9564–9570. [PubMed] [Google Scholar]
  10. Jendrisak J. J., Burgess R. R. A new method for the large-scale purification of wheat germ DNA-dependent RNA polymerase II. Biochemistry. 1975 Oct 21;14(21):4639–4645. doi: 10.1021/bi00692a012. [DOI] [PubMed] [Google Scholar]
  11. Job D., Durand R., Teissere M. Enzymatic properties and cooperative effects in the kinetics of wheat-germ RNA polymerases. A comparative study of the three nuclear enzyme classes. Eur J Biochem. 1982 Nov;128(1):35–39. doi: 10.1111/j.1432-1033.1982.tb06927.x. [DOI] [PubMed] [Google Scholar]
  12. Kumar S. A. The structure and mechanism of action of bacterial DNA-dependent RNA polymerase. Prog Biophys Mol Biol. 1981;38(3):165–210. doi: 10.1016/0079-6107(81)90013-4. [DOI] [PubMed] [Google Scholar]
  13. Lescure B., Williamson V., Sentenac A. Efficient and selective initiation by yeast RNA polymerase B in a dinucleotide-primed reaction. Nucleic Acids Res. 1981 Jan 10;9(1):31–45. doi: 10.1093/nar/9.1.31. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. McClure W. R., Cech C. L., Johnston D. E. A steady state assay for the RNA polymerase initiation reaction. J Biol Chem. 1978 Dec 25;253(24):8941–8948. [PubMed] [Google Scholar]
  15. McClure W. R., Chow Y. The kinetics and processivity of nucleic acid polymerases. Methods Enzymol. 1980;64:277–297. doi: 10.1016/s0076-6879(80)64013-0. [DOI] [PubMed] [Google Scholar]
  16. Munson L. M., Reznikoff W. S. Abortive initiation and long ribonucleic acid synthesis. Biochemistry. 1981 Apr 14;20(8):2081–2085. doi: 10.1021/bi00511a003. [DOI] [PubMed] [Google Scholar]
  17. Oen H., Wu C. W. DNA-dependent single-step addition reactions catalyzed by Escherichia coli RNA polymerase. Proc Natl Acad Sci U S A. 1978 Apr;75(4):1778–1782. doi: 10.1073/pnas.75.4.1778. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Oen H., Wu C. W., Haas R., Cole P. E. T7 deoxyribonucleic acid directed, rapid-turnover, single-step addition reactions catalyzed by Escherichia coli ribonucleic acid polymerase. Biochemistry. 1979 Sep 18;18(19):4148–4155. doi: 10.1021/bi00586a015. [DOI] [PubMed] [Google Scholar]
  19. Shaw P. A., Marshall M. V., Saunders G. F. Dinucleotide priming of RNA synthesis. Cytogenet Cell Genet. 1980;26(2-4):211–222. doi: 10.1159/000131442. [DOI] [PubMed] [Google Scholar]
  20. Shimamoto N., Wu C. W. Mechanism of ribonucleic acid chain initiation. 1. A non-steady-state study of ribonucleic acid synthesis without enzyme turnover. Biochemistry. 1980 Mar 4;19(5):842–848. doi: 10.1021/bi00546a003. [DOI] [PubMed] [Google Scholar]
  21. Shimamoto N., Wu C. W. Mechanism of ribonucleic acid chain initiation. 2. A real time analysis of initiation by the rapid kinetic technique. Biochemistry. 1980 Mar 4;19(5):849–856. doi: 10.1021/bi00546a004. [DOI] [PubMed] [Google Scholar]
  22. Sylvester J. E., Cashel M. Stable RNA-DNA-RNA polymerase complexes can accompany formation of a single phosphodiester bond. Biochemistry. 1980 Mar 18;19(6):1069–1074. doi: 10.1021/bi00547a004. [DOI] [PubMed] [Google Scholar]
  23. Towle H. C., Jolly J. F., Boezi J. A. Purification and characterization of bacteriophage gh-I-induced deoxyribonucleic acid-dependent ribonucleic acid polymerase from Pseudomonas putida. J Biol Chem. 1975 Mar 10;250(5):1723–1733. [PubMed] [Google Scholar]
  24. Vaisius A. C., Wieland T. Formation of a single phosphodiester bond by RNA polymerase B from calf thymus is not inhibited by alpha-amanitin. Biochemistry. 1982 Jun 22;21(13):3097–3101. doi: 10.1021/bi00256a010. [DOI] [PubMed] [Google Scholar]
  25. Yarbrough L. R. Utilization of primers and primer-templates by wheat germ RNA polymerase II. J Biol Chem. 1982 Jun 10;257(11):6171–6177. [PubMed] [Google Scholar]
  26. von Hippel P. H., Bear D. G., Morgan W. D., McSwiggen J. A. Protein-nucleic acid interactions in transcription: a molecular analysis. Annu Rev Biochem. 1984;53:389–446. doi: 10.1146/annurev.bi.53.070184.002133. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES