Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1985 Oct 11;13(19):7067–7077. doi: 10.1093/nar/13.19.7067

Stereospecific removal of methyl phosphotriesters from DNA by an Escherichia coli ada+ extract.

M Weinfeld, A F Drake, J K Saunders, M C Paterson
PMCID: PMC322023  PMID: 3903661

Abstract

The ada+ gene product, a DNA methyltransferase present in extracts from an Escherichia coli strain constitutive for the adaptive response, removes only half of the methyl phosphotriesters from alkylated DNA. Since DNA phosphotriesters occur in two isomeric configurations (denoted Rp and Sp), we examined whether this reflects a stereospecific mode of repair by the methyltransferase. Analysis by reverse-phase HPLC, phosphorus NMR and circular dichroism established that only triesters in the Sp configuration are acted upon by the E. coli extract.

Full text

PDF
7067

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahmmed Z., Laval J. Enzymatic repair of O-alkylated thymidine residues in DNA: involvement of a O4-methylthymine-DNA methyltransferase and a O2-methylthymine DNA glycosylase. Biochem Biophys Res Commun. 1984 Apr 16;120(1):1–8. doi: 10.1016/0006-291x(84)91405-0. [DOI] [PubMed] [Google Scholar]
  2. Bodell W. J., Singer B., Thomas G. H., Cleaver J. E. Evidence for removal at different rates of O-ethyl pyrimidines and ethylphosphotriesters in two human fibroblast cell lines. Nucleic Acids Res. 1979 Jun 25;6(8):2819–2829. doi: 10.1093/nar/6.8.2819. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chattopadhyaya J. B., Reese C. B. Chemical synthesis of tridecanucleoside dodecaphosphate sequence of SV40 DNA. Nucleic Acids Res. 1980 May 10;8(9):2039–2053. doi: 10.1093/nar/8.9.2039. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cheng D. M., Sarma R. H. Intimate details of the conformational characteristics of deoxyribodinucleoside monophosphates in aqueous solution. J Am Chem Soc. 1977 Oct 26;99(22):7333–7348. doi: 10.1021/ja00464a038. [DOI] [PubMed] [Google Scholar]
  5. Dolan M. E., Scicchitano D., Singer B., Pegg A. E. Comparison of repair of methylated pyrimidines in poly(dT) by extracts from rat liver and Escherichia coli. Biochem Biophys Res Commun. 1984 Aug 30;123(1):324–330. doi: 10.1016/0006-291x(84)90416-9. [DOI] [PubMed] [Google Scholar]
  6. Jensen D. E., Reed D. J. Reaction of DNA with alkylating agents. Quantitation of alkylation by ethylnitrosourea of oxygen and nitrogen sites on poly[dA-dT] including phosphotriester formation. Biochemistry. 1978 Nov 28;17(24):5098–5107. doi: 10.1021/bi00617a005. [DOI] [PubMed] [Google Scholar]
  7. Margison G. P., Cooper D. P., Brennand J. Cloning of the E. coli O6-methylguanine and methylphosphotriester methyltransferase gene using a functional DNA repair assay. Nucleic Acids Res. 1985 Mar 25;13(6):1939–1952. doi: 10.1093/nar/13.6.1939. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Marushige K., Marushige Y. Template properties of DNA alkylated with N-methyl-N-nitrosourea and N-ethyl-N-nitrosourea. Chem Biol Interact. 1983 Sep 1;46(2):179–188. doi: 10.1016/0009-2797(83)90027-3. [DOI] [PubMed] [Google Scholar]
  9. McCarthy J. G., Edington B. V., Schendel P. F. Inducible repair of phosphotriesters in Escherichia coli. Proc Natl Acad Sci U S A. 1983 Dec;80(24):7380–7384. doi: 10.1073/pnas.80.24.7380. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. McCarthy T. V., Lindahl T. Methyl phosphotriesters in alkylated DNA are repaired by the Ada regulatory protein of E. coli. Nucleic Acids Res. 1985 Apr 25;13(8):2683–2698. doi: 10.1093/nar/13.8.2683. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Miller P. S., Chandrasegaran S., Dow D. L., Pulford S. M., Kan L. S. Synthesis and template properties of an ethyl phosphotriester modified decadeoxyribonucleotide. Biochemistry. 1982 Oct 26;21(22):5468–5474. doi: 10.1021/bi00265a014. [DOI] [PubMed] [Google Scholar]
  12. Miller P. S., Fang K. N., Kondo N. S., Ts'o P. O. Syntheses and properties of adenine and thymine nucleoside alkyl phosphotriesters, the neutral analogs of dinucleoside monophosphates. J Am Chem Soc. 1971 Dec;93(24):6657–6665. doi: 10.1021/ja00753a054. [DOI] [PubMed] [Google Scholar]
  13. Morris S. M., Beranek D. T., Heflich R. H. The relationship between sister-chromatid exchange induction and the formation of specific methylated DNA adducts in Chinese hamster ovary cells. Mutat Res. 1983 Sep;121(3-4):261–266. doi: 10.1016/0165-7992(83)90212-9. [DOI] [PubMed] [Google Scholar]
  14. Ogilvie K. K., Beaucage S. L. Fluoride ion promoted deprotection and transesterification in nucleotide triesters. Nucleic Acids Res. 1979 Oct 10;7(3):805–823. doi: 10.1093/nar/7.3.805. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Potter B. V., Connolly B. A., Eckstein F. Synthesis and configurational analysis of a dinucleoside phosphate isotopically chiral at phosphorus. Stereochemical course of Penicillium citrum nuclease P1 reaction. Biochemistry. 1983 Mar 15;22(6):1369–1377. doi: 10.1021/bi00275a008. [DOI] [PubMed] [Google Scholar]
  16. Sedgwick B., Robins P. Isolation of mutants of Escherichia coli with increased resistance to alkylating agents: mutants deficient in thiols and mutants constitutive for the adaptive response. Mol Gen Genet. 1980;180(1):85–90. doi: 10.1007/BF00267355. [DOI] [PubMed] [Google Scholar]
  17. Singer B. N-nitroso alkylating agents: formation and persistence of alkyl derivatives in mammalian nucleic acids as contributing factors in carcinogenesis. J Natl Cancer Inst. 1979 Jun;62(6):1329–1339. [PubMed] [Google Scholar]
  18. Warren W., Crathorn A. R., Shooter K. V. The stability of methylated purines and of methylphosphotriesters in the DNA of V79 cells after treatment with N-methyl-N-nitrosourea. Biochim Biophys Acta. 1979 Jun 20;563(1):82–88. doi: 10.1016/0005-2787(79)90009-1. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES