Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1985 Oct 25;13(20):7183–7194. doi: 10.1093/nar/13.20.7183

Ozonolysis of supercoiled pBR322 DNA resulting in strand scission to open circular DNA.

K Sawadaishi, K Miura, E Ohtsuka, T Ueda, K Ishizaki, N Shinriki
PMCID: PMC322037  PMID: 2997743

Abstract

Treatment of supercoiled pBR322 DNA with ozone resulted in the conversion of closed circular DNA to open circular DNA. Restriction analysis of the resulting open circular DNA showed that ozonolysis in the absence of salt caused single strand cleavage at specific sites.

Full text

PDF

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Glikin G. C., Vojtískova M., Rena-Descalzi L., Palecek E. Osmium tetroxide: a new probe for site-specific distortions in supercoiled DNAs. Nucleic Acids Res. 1984 Feb 10;12(3):1725–1735. doi: 10.1093/nar/12.3.1725. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ishizaki K., Shinriki N., Ikehata A., Ueda T. Degradation of nucleic acids with ozone. I. Degradation of nucleobases, ribonucleosides and ribonucleoside-5'-monophosphates. Chem Pharm Bull (Tokyo) 1981 Mar;29(3):868–872. doi: 10.1248/cpb.29.868. [DOI] [PubMed] [Google Scholar]
  3. Ishizaki K., Shinriki N., Ueda T. Degradation of nucleic acids with ozone. V. Mechanism of action of ozone on deoxyribonucleoside 5'-monophosphates. Chem Pharm Bull (Tokyo) 1984 Sep;32(9):3601–3606. doi: 10.1248/cpb.32.3601. [DOI] [PubMed] [Google Scholar]
  4. Kowalski D. Changes in site specificity of single-strand-specific endonucleases on supercoiled PM2 DNA with temperature and ionic environment. Nucleic Acids Res. 1984 Sep 25;12(18):7071–7086. doi: 10.1093/nar/12.18.7071. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Lilley D. M. Dynamic, sequence-dependent DNA structure as exemplified by cruciform extrusion from inverted repeats in negatively supercoiled DNA. Cold Spring Harb Symp Quant Biol. 1983;47(Pt 1):101–112. doi: 10.1101/sqb.1983.047.01.013. [DOI] [PubMed] [Google Scholar]
  6. Lilley D. M. Hairpin-loop formation by inverted repeats in supercoiled DNA is a local and transmissible property. Nucleic Acids Res. 1981 Mar 25;9(6):1271–1289. doi: 10.1093/nar/9.6.1271. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Lilley D. M., Kemper B. Cruciform-resolvase interactions in supercoiled DNA. Cell. 1984 Feb;36(2):413–422. doi: 10.1016/0092-8674(84)90234-4. [DOI] [PubMed] [Google Scholar]
  8. Lilley D. M. The inverted repeat as a recognizable structural feature in supercoiled DNA molecules. Proc Natl Acad Sci U S A. 1980 Nov;77(11):6468–6472. doi: 10.1073/pnas.77.11.6468. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Maxam A. M., Gilbert W. A new method for sequencing DNA. Proc Natl Acad Sci U S A. 1977 Feb;74(2):560–564. doi: 10.1073/pnas.74.2.560. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Norgard M. V. Rapid and simple removal of contaminating RNA from plasmid DNA without the use of RNase. Anal Biochem. 1981 May 1;113(1):34–42. doi: 10.1016/0003-2697(81)90040-3. [DOI] [PubMed] [Google Scholar]
  11. Panayotatos N., Wells R. D. Cruciform structures in supercoiled DNA. Nature. 1981 Feb 5;289(5797):466–470. doi: 10.1038/289466a0. [DOI] [PubMed] [Google Scholar]
  12. Shinriki N., Ishizaki K., Ikehata A., Yoshizaki T., Nomura A., Miura K., Mizuno Y. Degradation of nucleic acids with ozone. II. Degradation of yeast RNA, yeast phenylalanine tRNA and tobacco mosaic virus RNA. Biochim Biophys Acta. 1981 Oct 27;655(3):323–328. doi: 10.1016/0005-2787(81)90041-1. [DOI] [PubMed] [Google Scholar]
  13. Shinriki N., Ishizaki K., Miura K., Ueda T., Harada F. Degradation of nucleic acids with ozone. III. Mode of ozone-degradation of mouse proline transfer ribonucleic acid (tRNA) and isoleucine tRNA. Chem Pharm Bull (Tokyo) 1983 Oct;31(10):3601–3608. doi: 10.1248/cpb.31.3601. [DOI] [PubMed] [Google Scholar]
  14. Shinriki N., Ishizaki K., Sato S., Miura K., Sawadaishi K., Ueda T. Degradation of nucleic acids with ozone. VI. Labilization of the double-helical structure of calf thymus deoxyribonucleic acid. Chem Pharm Bull (Tokyo) 1984 Sep;32(9):3636–3640. doi: 10.1248/cpb.32.3636. [DOI] [PubMed] [Google Scholar]
  15. Singleton C. K. Effects of salts, temperature, and stem length on supercoil-induced formation of cruciforms. J Biol Chem. 1983 Jun 25;258(12):7661–7668. [PubMed] [Google Scholar]
  16. Upholt W. B., Gray H. B., Jr, Vinograd J. Sedimentation velocity behavior of closed circular SV40 DNA as a function of superhelix density, ionic strength, counterion and temperature. J Mol Biol. 1971 Nov 28;62(1):21–38. doi: 10.1016/0022-2836(71)90128-8. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES