Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1969 Feb;48(2):235–249. doi: 10.1172/JCI105980

Congenital dysfibrinogenemia: fibrinogen detroit

Eberhard F Mammen 1,2,3,4, Ananda S Prasad 1,2,3,4, Marion I Barnhart 1,2,3,4, Chi C Au 1,2,3,4
PMCID: PMC322215  PMID: 4974308

Abstract

A 17 yr old female with a congenital bleeding disorder was found to suffer from dysfibrinogenemia. Whole blood and plasma coagulation times were delayed and thrombelastograms were grossly abnormal. Clottability of plasma fibrinogen by addition of thrombin was not demonstrated during the 30 min test period. Fibrinogen was revealed by turbidometric and immunologic techniques. Other coagulation factors were present in normal amounts and prothrombin activation was normal. Patient's plasma inhibited thrombin clotting times of normal plasma and purified normal fibrinogen. Fibrinolysis was not detected.

The plasma fibrinogen migrated normally on paper and cellulose acetate electrophoresis, but on immunoelectrophoresis it displayed a faster mobility than normal fibrinogen. On immunodiffusion the antigenic determinants were similar to those of normal fibrinogen. The patient's fibrinogen-antifibrinogen precipitins required longer to appear and the resultant precipitin was broader and hazier than those elicited with normal fibrinogen. These findings suggest the presence of two discrete populations of fibrinogen molecules.

Investigation of the family of the patient suggested that the defect has an autosomal dominant pattern of heredity. Immunologic comparisons of our patient's plasma and of her relatives with plasma of patients with “Fibrinogen Baltimore” and “Fibrinogen Cleveland” revealed certain differences in immunoelectrophoretic mobility as well as in immunodiffusion. In keeping with the nomenclatures of abnormal fibrinogens in the literature, we propose the term “Fibrinogen Detroit” for this fibrinogen.

Physicochemical properties of “Fibrinogen Detroit” were investigated also and compared with those of normal fibrinogen. Purified normal fibrinogen (clottability 96.7%) and “Fibrinogen Detroit” revealed homogeneity when studied by ultracentrifugation and immunoelectrophoresis. Native and cleaved “Fibrinogen Detroit” had the same sedimentation constants and molecular weights as the normal. In fresh samples. 3 moles of free SH groups/mole of fibrinogen were titrated in both. Determination of the amino acid composition revealed a decreased content of lysine, glucosamine, and galactosamine in abnormal fibrinogen. Total carbohydrates, protein-bound hexoses, sialic acid, and hexosamine were decreased in the abnormal fibrinogen.

In an investigation with Doctors Blombäck a specific molecular defect was revealed in the N-terminal disulfide knot of the alpha (A) chain in which the arginine at the 19th position was replaced by serine. It is believed that the substitution of a strongly basic amino acid with a neutral hydroxy acid may result in considerable conformational changes in the N-terminal disulfide knot of fibrinogen which might affect the “active site” for polymerization. The lower carbohydrate content observed in “Fibrinogen Detroit” may have been the result of a change in primary and tertiary structure of the protein.

Full text

PDF
235

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ALKJAERSIG N., FLETCHER A. P., SHERRY S. Pathogenesis of the coagulation defect developing during pathological plasma proteolytic ("fibrinolytic") states. II. The significance, mechanism and consequences of defective fibrin polymerization. J Clin Invest. 1962 Apr;41:917–934. doi: 10.1172/JCI104547. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. AYALA W., MOORE L. V., HESS E. L. The purple color reaction given by diphenylamine reagent. I. With normal and rheumatic fever sera. J Clin Invest. 1951 Jul;30(7):781–785. doi: 10.1172/JCI102492. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. BARNHART M. I., ANDERSON G. F., BAKER W. J. Immunochemical studies on proteins important in blood coagulation. Thromb Diath Haemorrh. 1962 Oct 1;8:21–36. [PubMed] [Google Scholar]
  4. BELLER F. K., KOCH F., MAMMEN E. Thrombelastographische Untersuchungen bei isolierten Störungen der Vor- und 1. Phase der Gerinnung; ein Beitrag zur Kritik der Thrombelastographie. Blut. 1956 Apr;2(2):112–124. doi: 10.1007/BF01629750. [DOI] [PubMed] [Google Scholar]
  5. BUCKELL M. The effect of citrate on euglobulin methods of estimating fibrinolytic activity. J Clin Pathol. 1958 Sep;11(5):403–405. doi: 10.1136/jcp.11.5.403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Beck E. A., Mosesson M. W., Charache P., Jackson D. P. Hämorrhagische Diathese mit dominantem Erbgang, verursacht durch ein anomales Fibrinogen (Fibrinogen Baltimore) Schweiz Med Wochenschr. 1966 Sep 17;96(37):1196–1199. [PubMed] [Google Scholar]
  7. Blombäck B., Blombäck M., Edman P., Hessel B. Human fibrinopeptides. Isolation, characterization and structure. Biochim Biophys Acta. 1966 Feb 28;115(2):371–396. doi: 10.1016/0304-4165(66)90437-5. [DOI] [PubMed] [Google Scholar]
  8. Blombäck B., Blombäck M., Hessel B., Iwanaga S. Structure of N-terminal fragments of fibrinogen and specificity of thrombin. Nature. 1967 Sep 30;215(5109):1445–1448. doi: 10.1038/2151445a0. [DOI] [PubMed] [Google Scholar]
  9. Blombäck M., Blombäck B., Mammen E. F., Prasad A. S. Fibrinogen Detroit--a molecular defect in the N-terminal disulphide knot of human fibrinogen? Nature. 1968 Apr 13;218(5137):134–137. doi: 10.1038/218134a0. [DOI] [PubMed] [Google Scholar]
  10. FOWELL A. H. Turbidimetric method of fibrinogen assay; results with the Coleman Junior spectrophotometer. Am J Clin Pathol. 1955 Mar;25(3):340–342. doi: 10.1093/ajcp/25.3_ts.340. [DOI] [PubMed] [Google Scholar]
  11. GOODMAN M., WOLFE H. R., NORTON S. Precipitin production in chickens. VI. The effect of varying concentrations of NaCl on precipitate formation. J Immunol. 1951 Feb;66(2):225–236. [PubMed] [Google Scholar]
  12. GRABAR P., WILLIAMS C. A. Méthode permettant l'étude conjuguée des proprietés électrophorétiques et immunochimiques d'un mélange de protéines; application au sérum sanguin. Biochim Biophys Acta. 1953 Jan;10(1):193–194. doi: 10.1016/0006-3002(53)90233-9. [DOI] [PubMed] [Google Scholar]
  13. GROSS R., SCHICK G., LANG N., NIES D., RAHN B., BECKER M., HENGSTMANN H. [Studies on a case of congenital afibrinogenemia. (On the role of blood coagulation in hemostasis)]. Klin Wochenschr. 1963 Jul 15;41:695–706. doi: 10.1007/BF01478415. [DOI] [PubMed] [Google Scholar]
  14. GUEST M. M. Profibrinolysin, antifibrinolysin, fibrinogen and urine fibrinolytic factors in the human subject. J Clin Invest. 1954 Nov;33(11):1553–1559. doi: 10.1172/JCI103033. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Guest M. M., Daly B. M., Ware A. G., Seegers W. H. A STUDY OF ANTIFIBRINOLYSIN ACTIVITY IN THE PLASMAS OF VARIOUS ANIMAL SPECIES. J Clin Invest. 1948 Nov;27(6):785–792. doi: 10.1172/JCI102029. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. HASSELBACK R., MARION R. B., THOMAS J. W. Congenital hypofibrinogenemia in five members of a family. Can Med Assoc J. 1963 Jan 5;88:19–22. [PMC free article] [PubMed] [Google Scholar]
  17. IMPERATO C., DETTORI A. G. Ipofibrinogenemia congenita con fibrinoastenia. Helv Paediatr Acta. 1958 Oct;13(4):380–399. [PubMed] [Google Scholar]
  18. INGRAM G. I., MATCHETT M. O. The 'serial thrombin time' method for measuring fibrinogenolytic activity in plasma. Nature. 1960 Nov 19;188:674–675. doi: 10.1038/188674a0. [DOI] [PubMed] [Google Scholar]
  19. Jackson D. P., Beck E. A., Charache P. Congenital disorders of fibrinogen. Fed Proc. 1965 Jul-Aug;24(4):816–821. [PubMed] [Google Scholar]
  20. Johnson P., Mihalyi E. Physicochemical studies of bovine fibrinogen. I. Molecular weight and hydrodynamic properties of fibrinogen and fibrinogen cleaved by sulfite in 5 M guanidine-HC-l solution. Biochim Biophys Acta. 1965 Jul 22;102(2):467–475. doi: 10.1016/0926-6585(65)90137-8. [DOI] [PubMed] [Google Scholar]
  21. LAKI K., MESTER L. The role of the carbohydrate moiety in bovine fibrinogen. Biochim Biophys Acta. 1962 Feb 12;57:152–154. doi: 10.1016/0006-3002(62)91094-6. [DOI] [PubMed] [Google Scholar]
  22. LANGDELL R. D., WAGNER R. H., BRINKHOUS K. M. Effect of antihemophilic factor on one-stage clotting tests; a presumptive test for hemophilia and a simple one-stage antihemophilic factor assy procedure. J Lab Clin Med. 1953 Apr;41(4):637–647. [PubMed] [Google Scholar]
  23. LATALLO Z. S., BUDZYNSKI A. Z., LIPINSKI B., KOWALSKI E. INHIBITION OF THROMBIN AND OF FIBRIN POLYMERIZATION, TWO ACTIVITIES DERIVED FROM PLASMIN-DIGESTED FIBRINOGEN. Nature. 1964 Sep 12;203:1184–1185. doi: 10.1038/2031184a0. [DOI] [PubMed] [Google Scholar]
  24. MOKRASCH L. C. Analysis of hexose phosphates and sugar mixtures with the anthrone reagent. J Biol Chem. 1954 May;208(1):55–59. [PubMed] [Google Scholar]
  25. Prasad A. S., Tranchida L., Oberleas D., Poulik M. D. Studies in macrocryoglobulinemia: possible role of SH groups in cryoprecipitation. J Lab Clin Med. 1967 Mar;69(3):456–466. [PubMed] [Google Scholar]
  26. Rimington C. Seromucoid and the bound carbohydrate of the serum proteins. Biochem J. 1940 Jun;34(6):931–940. doi: 10.1042/bj0340931. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Rudney H. THE UTILIZATION OF L-GLUCOSE BY MAMMALIAN TISSUES AND BACTERIA. Science. 1940 Aug 2;92(2379):112–113. doi: 10.1126/science.92.2379.112. [DOI] [PubMed] [Google Scholar]
  28. SCHULTZE H. E., SCHWICK G. Quantitative immunologische Bestimmung von Plasmaproteinen. Clin Chim Acta. 1959 Jan;4(1):15–25. doi: 10.1016/0009-8981(59)90075-0. [DOI] [PubMed] [Google Scholar]
  29. SEEGERS W. H., JOHNSON J. F., FELL C. An antithrombin reaction to prothrombin activation. Am J Physiol. 1954 Jan;176(1):97–103. doi: 10.1152/ajplegacy.1953.176.1.97. [DOI] [PubMed] [Google Scholar]
  30. SEEGERS W. H., MILLER K. D., ANDREWS E. B., MURPHY R. C. Fundamental interactions and effect of storage, ether, adsorbants and blood clotting on plasma antithrombin activity. Am J Physiol. 1952 Jun;169(3):700–711. doi: 10.1152/ajplegacy.1952.169.3.700. [DOI] [PubMed] [Google Scholar]
  31. SZARA S., BAGDY D. On the polysaccharide of fibrinogen and fibrin. Biochim Biophys Acta. 1953 Jun;11(2):313–314. doi: 10.1016/0006-3002(53)90048-1. [DOI] [PubMed] [Google Scholar]
  32. TRIANTAPHYLLOPOULOS D. C. Anticoagulant action of TAMe and AFIF. Am J Physiol. 1961 Apr;200:771–774. doi: 10.1152/ajplegacy.1961.200.4.771. [DOI] [PubMed] [Google Scholar]
  33. TRIANTAPHYLLOPOULOS D. C. Nature of the thrombin-inhibiting effect of incubated fibrinogen. Am J Physiol. 1959 Sep;197:575–579. doi: 10.1152/ajplegacy.1959.197.3.575. [DOI] [PubMed] [Google Scholar]
  34. WILSON M. W., PRINGLE B. H. Experimental studies of the agar-plate precipitin test of Ouchterlony. J Immunol. 1954 Oct;73(4):232–243. [PubMed] [Google Scholar]
  35. YPHANTIS D. A. EQUILIBRIUM ULTRACENTRIFUGATION OF DILUTE SOLUTIONS. Biochemistry. 1964 Mar;3:297–317. doi: 10.1021/bi00891a003. [DOI] [PubMed] [Google Scholar]
  36. von Felten A., Duckert F., Frick P. Gerinnungsstörung ohne hämorrhagische Diathese infolge verzögerter Aggregation der Fibrinmoleküle. Schweiz Med Wochenschr. 1965 Oct 23;95(43):1453–1456. [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES