Abstract
The site, nature, magnitude, and duration of fluid and electrolyte loss into the small intestine during the acute and recovery phase of human cholera was defined in 27 Indian patients. 11 subjects without cholera served as controls. The marker perfusion technique employed was shown, in preliminary experiments, to measure accurately jejunal and ileal fluid and electrolyte transmucosal transport rates under conditions of cholera diarrhea. Fluid loss into the lumen occurred from jejunal and ileal mucosa. The fluid was isotonic in both regions. Bicarbonate concentration was significantly higher in ileal than jejunal fluid during all phases of the disease. Bicarbonate concentration in both regions was significantly higher in acute cholera than during convalescence. Fluid loss into the intestinal lumen ranged from 0.07 to 10.9 ml/hr per cm. Losses were significantly greater from jejunum than ileum. Net ileal absorption was recorded in five of 10 acute cholera studies. During the acute phase of the disease, net jejunal fluid transport showed a positive correlation with fasting intestinal flow rate and stool output. Stool output was also positively correlated with jejunal fasting intestinal flow rates. Recovery of normal fluid and electrolyte absorptive function was usually complete in both jejunum and ileum by the sixth day after admission.
These findings in human cholera validate the animal models of choleraic diarrhea and suggest that similar measurements of small intestinal secretory function in other nonspecific diarrheal diseases using the marker perfusion technique may be rewarding.
Full text
PDF












Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BEISEL W. R., WATTEN R. H., BLACKWELL R. Q., BENYAJATI C., PHILLIPS R. A. THE ROLE OF BICARBONATE PATHOPHYSIOLOGY AND THERAPY IN ASIATIC CHOLERA. Am J Med. 1963 Jul;35:58–66. doi: 10.1016/0002-9343(63)90164-5. [DOI] [PubMed] [Google Scholar]
- Banwell J. G., Pierce N. F., Mitra R., Caranasos G. J., Keimowitz R. I., Mondal A., Manji P. M. Preliminary results of a study of small intestinal water and solute movement in acute and convalescent human cholera. Indian J Med Res. 1968 May;56(5):633–639. [PubMed] [Google Scholar]
- Carpenter C. C., Greenough W. B., 3rd Response of the canine duodenum to intraluminal challenge with cholera exotoxin. J Clin Invest. 1968 Dec;47(12):2600–2607. doi: 10.1172/JCI105942. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Carpenter C. C., Sack R. B., Feeley J. C., Steenberg R. W. Site and characteristics of electrolyte loss and effect of intraluminal glucose in experimental canine cholera. J Clin Invest. 1968 May;47(5):1210–1220. doi: 10.1172/JCI105810. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cooper H., Levitan R., Fordtran J. S., Ingelfinger F. J. A method for studying absorption of water and solute from the human small intestine. Gastroenterology. 1966 Jan;50(1):1–7. [PubMed] [Google Scholar]
- FORDTRAN J. S., LEVITAN R., BIKERMAN V., BURROWS B. A., INGELFINGER F. J. The kinetics of water absorption in the human intestine. Trans Assoc Am Physicians. 1961;74:195–206. [PubMed] [Google Scholar]
- Finkelstein R. A., Atthasampunna P., Chulasamaya M., Charunmethee P. Pathogenesis of experimental cholera: biologic ativities of purified procholeragen A. J Immunol. 1966 Mar;96(3):440–449. [PubMed] [Google Scholar]
- Fordtran J. S. Marker perfusion techniques for measuring intestinal absorption in man. Gastroenterology. 1966 Dec;51(6):1089–1093. [PubMed] [Google Scholar]
- Greenough W. B., 3rd Pancreatic and hepatic hypersecretion in cholera. Lancet. 1965 Nov 13;2(7420):991–994. doi: 10.1016/s0140-6736(65)92848-5. [DOI] [PubMed] [Google Scholar]
- HENDRIX T. R. Effect of a hypertonic solution on intestinal absorption. Am J Dig Dis. 1957 Nov;2(11):643–648. doi: 10.1007/BF02231475. [DOI] [PubMed] [Google Scholar]
- Hemano I., Hitchens J. T., Beiler J. M. Paradoxical intestinal inhibitory effects of staphylococcal enterotoxin. Gastroenterology. 1967 Jul;53(1):71–77. [PubMed] [Google Scholar]
- LINDENBAUM J. MALABSORPTION DURING AND AFTER RECOVERY FROM ACUTE INTESTINAL INFECTION. Br Med J. 1965 Aug 7;2(5457):326–329. doi: 10.1136/bmj.2.5457.326. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Leitch G. J., Burrows W. Experimental cholera in the rabbit ligated intestine: ion and water accumulation in the duodenum, ileum and colon. J Infect Dis. 1968 Oct;118(4):349–359. doi: 10.1093/infdis/118.4.349. [DOI] [PubMed] [Google Scholar]
- Leitch G. J., Iwert M. E., Burrows W. Experimental cholera in the rabbit ligated ileal loop: toxin-induced water and ion movement. J Infect Dis. 1966 Jun;116(3):303–312. doi: 10.1093/infdis/116.3.303. [DOI] [PubMed] [Google Scholar]
- Norris H. T., Majno G. On the role of the ileal epithelium in the pathogenesis of experimental cholera. Am J Pathol. 1968 Aug;53(2):263–279. [PMC free article] [PubMed] [Google Scholar]
- PHILLIPS R. A. The patho-physiology of cholera. Bull World Health Organ. 1963;28(3):297–305. [PMC free article] [PubMed] [Google Scholar]
- Phillips R. A. Cholera in the perspective of 1966. Ann Intern Med. 1966 Nov;65(5):922–930. doi: 10.7326/0003-4819-65-5-922. [DOI] [PubMed] [Google Scholar]
- Pierce N. F., Banwell J. G., Rupak D. M., Mitra R. C., Caranasos G. J., Keimowitz R. I., Mondal A., Manji P. M. Effect of intragastric glucose-electrolyte infusion upon water and electrolyte balance in Asiatic cholera. Gastroenterology. 1968 Sep;55(3):333–343. [PubMed] [Google Scholar]
- Pierce N. F., Sack R. B., Mitra R. C., Banwell J. G., Brigham K. L., Fedson D. S., Mondal A. Replacement of water and electrolyte losses in cholera by an oral glucose-electrolyte solution. Ann Intern Med. 1969 Jun;70(6):1173–1181. doi: 10.7326/0003-4819-70-6-1173. [DOI] [PubMed] [Google Scholar]
- SCHUETZ H. B., REIZENSTEIN P. RADIOVITAMIN B12 AS A DILUTION INDICATOR IN GASTROINTESTINAL RESEARCH. Am J Dig Dis. 1963 Nov;8:904–907. doi: 10.1007/BF02232085. [DOI] [PubMed] [Google Scholar]
- Sack R. B., Carpenter C. C. Experimental canine cholera. I. Development of the model. J Infect Dis. 1969 Feb;119(2):138–149. doi: 10.1093/infdis/119.2.138. [DOI] [PubMed] [Google Scholar]
- Sack R. B., Carpenter C. C. Experimental canine cholera. II. Production by cell-free culture filtrates of Vibrio cholerae. J Infect Dis. 1969 Feb;119(2):150–157. doi: 10.1093/infdis/119.2.150. [DOI] [PubMed] [Google Scholar]
- Sack R. B., Carpenter C. C., Steenburg R. W., Pierce N. F. Experimental cholera. A canine model. Lancet. 1966 Jul 23;2(7456):206–207. doi: 10.1016/s0140-6736(66)92484-6. [DOI] [PubMed] [Google Scholar]
- Torres-Pinedo R., Rivera C. L., Fernández S. Studies on infant diarrhea. II. Absorption of glucose and net fluxes of water and sodium chloride in a segment of the jejunum. J Clin Invest. 1966 Dec;45(12):1916–1922. doi: 10.1172/JCI105496. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WATTEN R. H., MORGAN F. M., YACHAI NA SONGKHLA, VANIKIATI B., PHILLIPS R. A. Water and electrolyte studies in cholera. J Clin Invest. 1959 Nov;38:1879–1889. doi: 10.1172/JCI103965. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Whalen G. E., Harris J. A., Geenen J. E., Soergel K. H. Sodium and water absorption from the human small intestine. The accuracy of the perfusion method. Gastroenterology. 1966 Dec;51(6):975–984. [PubMed] [Google Scholar]