Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1970 Apr;49(4):623–634. doi: 10.1172/JCI106273

Abnormal rheology of oxygenated blood in sickle cell anemia

Shu Chien 1,2, Shunichi Usami 1,2, John F Bertles 1,2
PMCID: PMC322516  PMID: 5443167

Abstract

The viscosity of oxygenated blood from patients with sickle cell anemia (Hb SS disease) was found to be abnormally increased, a property which contrasts with the well recognized viscous aberration produced by deoxygenation of Hb SS blood. Experiments designed to explain this finding led to considerations of deformation and aggregation, primary determinants of the rheologic behavior of erythrocytes as they traverse the microcirculation. Deformability of erythrocytes is in turn dependent upon internal viscosity (i.e. the state and concentration of hemoglobin in solution) and membrane flexibility. Definition of the contribution made by each of these properties to the abnormal viscosity of oxygenated Hb SS blood was made possible by analysis of viscosity measurements, made over a wide range of shear rates and cell concentrations, on Hb SS erythrocytes and normal erythrocytes suspended in Ringer's solution (where aggregation does not occur) and in plasma. Similar measurements were made on the two cell types separated by ultracentrifugation of Hb SS erythrocytes: high density erythrocytes composed of 50 to 70% irreversibly “sickled” cells (ISC) and low density erythrocytes composed of over 95% non-ISC.

Under all experimental conditions (hematocrit, shear rate, and suspending medium) the viscosity of ISC exceeds that of normal erythrocytes. The viscosity of non-ISC is elevated only in the absence of aggregation and over intermediate ranges of hematocrit. Analyses of the data reveal (a) an elevated internal viscosity of ISC: (b) a reduced membrane flexibility of both ISC and non-ISC, particularly at low shear rates; and (c) a reduced tendency for aggregation displayed by both cell types.

The abnormal viscosity of oxygenated Hb SS blood can be attributed to the altered rheology of ISC and, to a lesser extent, of non-ISC. These studies assign a role to the abnormal rheology of Hb SS erythrocytes in the pathogenesis of sickle cell anemia, even under conditions of complete oxygenation.

Full text

PDF
623

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ALLAMANIS J. Paper electrophoresis of serum proteins in Cooley's anaemia and sickle cell anaemia. Acta Paediatr. 1955 Mar;44(2):122–127. doi: 10.1111/j.1651-2227.1955.tb04122.x. [DOI] [PubMed] [Google Scholar]
  2. ANDERSON R., CASSELL M., MULLINAX G. L., CHAPLIN H., Jr Effect of normal cells on viscosity of sickle-cell blood. In vitro studies and report of six years' experience with a prophylactic program of "partial exchange transfusion". Arch Intern Med. 1963 Mar;111:286–294. doi: 10.1001/archinte.1963.03620270012003. [DOI] [PubMed] [Google Scholar]
  3. BESSIS M., NOMARSKI G., THIERY J. P., BRETON-GORIUS J. Etude sur la falciformation des globules rouges au microscope polarisant et au microscope électronique. II. L'intérieru du globule; comparaison avec les cristaux intra-globulaires. Rev Hematol. 1958 Apr-Jun;13(2):249–270. [PubMed] [Google Scholar]
  4. Bertles J. F., Döbler J. Reversible and irreversible sickling: a distinction by electron microscopy. Blood. 1969 Jun;33(6):884–898. [PubMed] [Google Scholar]
  5. Bertles J. F., Milner P. F. Irreversibly sickled erythrocytes: a consequence of the heterogeneous distribution of hemoglobin types in sickle-cell anemia. J Clin Invest. 1968 Aug;47(8):1731–1741. doi: 10.1172/JCI105863. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Charache S., Conley C. L., Waugh D. F., Ugoretz R. J., Spurrell J. R. Pathogenesis of hemolytic anemia in homozygous hemoglobin C disease. J Clin Invest. 1967 Nov;46(11):1795–1811. doi: 10.1172/JCI105670. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chien S., Dellenback R. J., Usami S., Gregersen M. I. Plasma trapping in hematocrit determination. Differences among animal species. Proc Soc Exp Biol Med. 1965 Aug-Sep;119(4):1155–1158. doi: 10.3181/00379727-119-30402. [DOI] [PubMed] [Google Scholar]
  8. Chien S., Usami S., Dellenback R. J., Gregersen M. I. Blood viscosity: influence of erythrocyte deformation. Science. 1967 Aug 18;157(3790):827–829. doi: 10.1126/science.157.3790.827. [DOI] [PubMed] [Google Scholar]
  9. Chien S., Usami S., Dellenback R. J., Gregersen M. I., Nanninga L. B., Guest M. M. Blood viscosity: influence of erythrocyte aggregation. Science. 1967 Aug 18;157(3790):829–831. doi: 10.1126/science.157.3790.829. [DOI] [PubMed] [Google Scholar]
  10. Chien S., Usami S., Taylor H. M., Lundberg J. L., Gregersen M. I. Effects of hematocrit and plasma proteins on human blood rheology at low shear rates. J Appl Physiol. 1966 Jan;21(1):81–87. doi: 10.1152/jappl.1966.21.1.81. [DOI] [PubMed] [Google Scholar]
  11. Cokelet G. R., Meiselman H. J. Rheological comparison of hemoglobin solutions and erythrocyte suspensions. Science. 1968 Oct 11;162(3850):275–277. doi: 10.1126/science.162.3850.275. [DOI] [PubMed] [Google Scholar]
  12. DINTENFASS L. Considerations of the internal viscosity of red cells and its effect on the viscosity of whole blood. Angiology. 1962 Aug;13:333–344. doi: 10.1177/000331976201300801. [DOI] [PubMed] [Google Scholar]
  13. DINTENFASS L. RHEOLOGY OF PACKED RED BLOOD CELLS CONTAINING HEMOGLOBINS A-A, S-A, AND S-S. J Lab Clin Med. 1964 Oct;64:594–600. [PubMed] [Google Scholar]
  14. Döbler J., Bertles J. F. The physical state of hemoglobin in sickle-cell anemia erythrocytes in vivo. J Exp Med. 1968 Apr 1;127(4):711–714. doi: 10.1084/jem.127.4.711. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. ERSLEV A. J., ATWATER J. EFFECT OF MEAN CORPUSCULAR HEMOGLOBIN CONCENTRATION ON VISCOSITY. J Lab Clin Med. 1963 Sep;62:401–406. [PubMed] [Google Scholar]
  16. FENICHEL R. L., WATSON J., EIRICH F. Electrophoretic studies of the plasma and serum proteins in sickle cell anemia. J Clin Invest. 1950 Dec;29(12):1620–1624. doi: 10.1172/JCI102405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Fung Y. C. Theoretical considerations of the elasticity of red cells and small blood vessels. Fed Proc. 1966 Nov-Dec;25(6):1761–1772. [PubMed] [Google Scholar]
  18. HARRIS J. W., BREWSTER H. H., HAM T. H., CASTLE W. B. Studies on the destruction of red blood cells. X. The biophysics and biology of sickle-cell disease. AMA Arch Intern Med. 1956 Feb;97(2):145–168. doi: 10.1001/archinte.1956.00250200021002. [DOI] [PubMed] [Google Scholar]
  19. Ham T. H., Dunn R. F., Sayre R. W., Murphy J. R. Physical properties of red cells as related to effects in vivo. I. Increased rigidity of erythrocytes as measured by viscosity of cells altered by chemical fixation, sickling and hypertonicity. Blood. 1968 Dec;32(6):847–861. [PubMed] [Google Scholar]
  20. JANDL J. H., SIMMONS R. L., CASTLE W. B. Red cell filtration and the pathogenesis of certain hemolytic anemias. Blood. 1961 Aug;18:133–148. [PubMed] [Google Scholar]
  21. Jensen W. N. Fragmentation and the "freakish poikilocyte". Am J Med Sci. 1969 Jun;257(6):355–364. doi: 10.1097/00000441-196906000-00001. [DOI] [PubMed] [Google Scholar]
  22. Murayama M. Molecular mechanism of red cell "sickling". Science. 1966 Jul 8;153(3732):145–149. doi: 10.1126/science.153.3732.145. [DOI] [PubMed] [Google Scholar]
  23. Murphy J. R. Hemoglobin CC disease: rheological properties or erythrocytes and abnormalities in cell water. J Clin Invest. 1968 Jul;47(7):1483–1495. doi: 10.1172/JCI105842. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. RAND P. W., LACOMBE E. HEMODILUTION, TONICITY, AND BLOOD VISCOSITY. J Clin Invest. 1964 Nov;43:2214–2226. doi: 10.1172/JCI105095. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. RATNOFF O. D., MENZIE C. A new method for the determination of fibrinogen in small samples of plasma. J Lab Clin Med. 1951 Feb;37(2):316–320. [PubMed] [Google Scholar]
  26. Rand P. W., Austin W. H., Lacombe E., Barker N. pH and blood viscosity. J Appl Physiol. 1968 Nov;25(5):550–559. doi: 10.1152/jappl.1968.25.5.550. [DOI] [PubMed] [Google Scholar]
  27. SINGER K., CHERNOFF A. I., SINGER L. Studies on abnormal hemoglobins. I. Their demonstration in sickle cell anemia and other hematologic disorders by means of alkali denaturation. Blood. 1951 May;6(5):413–428. [PubMed] [Google Scholar]
  28. Schmid-Schöenbein H., Wells R. Fluid drop-like transition of erythrocytes under shear. Science. 1969 Jul 18;165(3890):288–291. doi: 10.1126/science.165.3890.288. [DOI] [PubMed] [Google Scholar]
  29. Schmid-Schönbein H., Gaehtgens P., Hirsch H. On the shear rate dependence of red cell aggregation in vitro. J Clin Invest. 1968 Jun;47(6):1447–1454. doi: 10.1172/JCI105836. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Schmidt-Nielsen K., Taylor C. R. Red blood cells: why or why not? Science. 1968 Oct 11;162(3850):274–275. doi: 10.1126/science.162.3850.274. [DOI] [PubMed] [Google Scholar]
  31. Serjeant G. R., Serjeant B. E., Milner P. F. The irreversibly sickled cell; a determinant of haemolysis in sickle cell anaemia. Br J Haematol. 1969 Dec;17(6):527–533. doi: 10.1111/j.1365-2141.1969.tb01403.x. [DOI] [PubMed] [Google Scholar]
  32. Stetson C. A., Jr The state of hemoglobin in sickled erythrocytes. J Exp Med. 1966 Feb 1;123(2):341–346. doi: 10.1084/jem.123.2.341. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Usami S., Chien S., Gregersen M. I. Viscometric characteristics of blood of the elephant, man, dog, sheep, and goat. Am J Physiol. 1969 Sep;217(3):884–890. doi: 10.1152/ajplegacy.1969.217.3.884. [DOI] [PubMed] [Google Scholar]
  34. WELLS R. E., Jr RHEOLOGY OF BLOOD IN THE MICROVASCULATURE. N Engl J Med. 1964 Apr 16;270:832–CONTD. doi: 10.1056/NEJM196404162701608. [DOI] [PubMed] [Google Scholar]
  35. White J. G. The fine structure of sickled hemoglobin in situ. Blood. 1968 May;31(5):561–579. [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES