Abstract
Micropuncture studies of the recovery phase of glycerol-induced myohemoglobinuric acute renal failure were performed in rats whose blood urea nitrogen (BUN) had fallen at least 20% below its peak value. The glomerular filtration rate (GFR) of individual nephrons in a single kidney in the recovery period generally either was in the normal range or minimal. Each animal's BUN concentration at the time of the study was inversely related to the proportion of functioning surface nephrons, but did not correlate with individual nephron GFR values. Proximal tubule fractional water absorption was significantly depressed as manifested by both depressed inulin (TF/P) values and supernormal volumes of collections, a finding which, in the absence of a urea-induced osmotic diuresis, suggests impaired sodium transport by the damaged nephron. The mean proximal tubule hydrostatic pressure in recovery was normal and there was little variation in pressure among functioning nephrons. It is concluded that recovery from this model of acute renal failure reflects the progressive recruitment of increasing numbers of functioning nephrons. The recovery of individual nephron glomerular filtration, once begun, was rapid and complete. No evidence could be adduced that the gradual return of renal function towards normal reflects a slow release of tubular obstruction or repair of disrupted tubular epithelium. Rather, recovery appeared to be directly attributable to the return of an adequate effective glomerular filtration pressure. Significant limitation in proximal tubule water absorption persisted after individual nephron GFR had returned to normal or supernormal values in this model of experimental acute renal failure in the rat, a finding which readily accounts for the diuresis associated with the recovery phase of this syndrome.
Full text
PDF







Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BOTT P. A. Renal excretion of creatinine in Necturus; a reinvestigation by direct analysis of glomerular and tubule fluid for creatinine and inulin. Am J Physiol. 1952 Jan;168(1):107–113. doi: 10.1152/ajplegacy.1951.168.1.107. [DOI] [PubMed] [Google Scholar]
- Bank N., Mutz B. F., Aynedjian H. S. The role of "leakage" of tubular fluid in anuria due to mercury poisoning. J Clin Invest. 1967 May;46(5):695–704. doi: 10.1172/JCI105570. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Biber T. U., Mylle M., Baines A. D., Gottschalk C. W., Oliver J. R., MacDowell M. C. A study by micropuncture and microdissection of acute renal damage in rats. Am J Med. 1968 May;44(5):664–705. doi: 10.1016/0002-9343(68)90251-9. [DOI] [PubMed] [Google Scholar]
- Cuppage F. E., Tate A. Repair of the nephron in acute renal failure: comparative regeneration following various forms of acute tubular injury. Pathol Microbiol (Basel) 1968;32(6):327–344. doi: 10.1159/000162075. [DOI] [PubMed] [Google Scholar]
- FLANIGAN W. J., OKEN D. E. RENAL MICROPUNCTURE STUDY OF THE DEVELOPMENT OF ANURIA IN THE RAT WITH MERCURY-INDUCED ACUTE RENAL FAILURE. J Clin Invest. 1965 Mar;44:449–457. doi: 10.1172/JCI105158. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GOTTSCHALK C. W., MYLLE M. Micropuncture study of pressures in proximal tubules and peritubular capillaries of the rat kidney and their relation to ureteral and renal venous pressures. Am J Physiol. 1956 May;185(2):430–439. doi: 10.1152/ajplegacy.1956.185.2.430. [DOI] [PubMed] [Google Scholar]
- HVIDBERG E., SCHOU J., SZPORNY L. EXCHANGE OF I-131-ALBUMIN IN ACUTE INFLAMMATORY OEDEMA. Acta Physiol Scand. 1964 Dec;62:295–303. doi: 10.1111/j.1748-1716.1964.tb10427.x. [DOI] [PubMed] [Google Scholar]
- Jaenike J. R. Micropuncture study of methemoglobin-induced acute renal failure in the rat. J Lab Clin Med. 1969 Mar;73(3):459–468. [PubMed] [Google Scholar]
- MAYERSON H. S. The lymphatic system with particular reference to the kidney. Surg Gynecol Obstet. 1963 Mar;116:259–272. [PubMed] [Google Scholar]
- Massani Z. M., Finkielman S., Worcel M., Agrest A., Paladini A. C. Angiotensin blood levels in hypertensive and non-hypertensive diseases. Clin Sci. 1966 Jun;30(3):473–483. [PubMed] [Google Scholar]
- McDonald F. D., Thiel G., Wilson D. R., DiBona G. F., Oken D. E. The prevention of acute renal failure in the rat by long-term saline loading: a possible role of the renin-angiotensin axis. Proc Soc Exp Biol Med. 1969 Jun;131(2):610–614. doi: 10.3181/00379727-131-33937. [DOI] [PubMed] [Google Scholar]
- Ng K. K., Vane J. R. Fate of angiotensin I in the circulation. Nature. 1968 Apr 13;218(5137):144–150. doi: 10.1038/218144a0. [DOI] [PubMed] [Google Scholar]
- Oken D. E., Arce M. L., Wilson D. R. Glycerol-induced hemoglobinuric acute renal failure in the rat. I. Micropuncture study of the development of oliguria. J Clin Invest. 1966 May;45(5):724–735. doi: 10.1172/JCI105387. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ruiz-Guiñazú A., Coelho J. B., Paz R. A. Methemoglobin-induced acute renal failure in the rat. In vivo observation, histology and micropuncture measurements of intratubular and postglomerular vascular pressures. Nephron. 1967;4(5):257–275. doi: 10.1159/000179587. [DOI] [PubMed] [Google Scholar]
- Schnermann J., Nagel W., Thurau K. Die frühdistale Natriumkonzentration in Rattennieren nach renaler Ischämie und hämorrhagischer Hypotension. Ein Beitrag zur Pathogenese der postischämischen und posthämorrhagischen Filtraternierdrigung. Pflugers Arch Gesamte Physiol Menschen Tiere. 1966;287(3):296–310. [PubMed] [Google Scholar]
- Steinhausen M., Eisenbach G. M., Helmstädter V. Concentration of Lissamine green in proximal tubules of antidiuretic and mercury poisoned rats and the permeability of these tubules. Pflugers Arch. 1969;311(1):1–15. doi: 10.1007/BF00588058. [DOI] [PubMed] [Google Scholar]
- TU W. H. PLASMA RENIN ACTIVITY IN ACUTE TUBULAR NECROSIS AND OTHER RENAL DISEASES ASSOCIATED WITH HYPERTENSION. Circulation. 1965 May;31:686–695. doi: 10.1161/01.cir.31.5.686. [DOI] [PubMed] [Google Scholar]
- Thiel G., McDonald F. D., Oken D. E. Micropuncture studies of the basis for protection of renin depleted rats from glycerol induced acute renal failure. Nephron. 1970;7(1):67–79. doi: 10.1159/000179809. [DOI] [PubMed] [Google Scholar]
- Thiel G., Wilson D. R., Arce M. L., Oken D. E. Glycerol induced hemoglobinuric acute renal failure in the rat. II. The experimental model, predisposing factors, and pathophysiologic features. Nephron. 1967;4(5):276–297. doi: 10.1159/000179588. [DOI] [PubMed] [Google Scholar]
- Wilson D. R., Thiel G., Arce M. L., Oken D. E. Glycerol induced hemoglobinuric acute renal failure in the rat. 3. Micropuncture study of the effects of mannitol and isotonic saline on individual nephron function. Nephron. 1967;4(6):337–355. doi: 10.1159/000179594. [DOI] [PubMed] [Google Scholar]
- Wilson D. R., Thiel G., Arce M. L., Oken D. E. The role of the concentration mechanism in the development of acute renal failure: micropuncture studies using diabetes insipidus rats. Nephron. 1969;6(2):128–139. doi: 10.1159/000179721. [DOI] [PubMed] [Google Scholar]