Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1970 Jun;49(6):1088–1095. doi: 10.1172/JCI106324

The interaction of 2,3-diphosphoglycerate with various human hemoglobins

H Franklin Bunn 1,2, Robin W Briehl 1,2
PMCID: PMC322576  PMID: 5422014

Abstract

Oxygen equilibria were measured on a number of human hemoglobins, which had been “stripped” of organic phosphates and isolated by column chromatography. In the presence of 2 × 10-4 M 2,3-diphosphoglycerate (2,3-DPG), the P50 of hemoglobins A, A2, S, and C increased about twofold, signifying a substantial and equal decrease in oxygen affinity. Furthermore, hemoglobins Chesapeake and MMilwaukee-1 which have intrinsically high and low oxygen affinities, respectively, also showed a twofold increase in P50 in the presence of 2 × 10-4 M 2,3-DPG. In comparison to these, hemoglobins AIC and F were less reactive with 2,3-DPG while hemoglobin FI showed virtually no reactivity. The N-terminal amino of each β-chain of hemoglobin AIC is linked to a hexose. In hemoglobin FI the N-terminal amino of each γ-chain is acetylated. These results suggest that the N-terminal amino groups of the non-α-chains are involved in the binding of 2,3-DPG to hemoglobin.

Full text

PDF
1088

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ALLEN D. W., GUTHE K. F., WYMAN J., Jr Further studies on the oxygen equilibrium of hemoglobin. J Biol Chem. 1950 Nov;187(1):393–410. [PubMed] [Google Scholar]
  2. AMES B. N., DUBIN D. T. The role of polyamines in the neutralization of bacteriophage deoxyribonucleic acid. J Biol Chem. 1960 Mar;235:769–775. [PubMed] [Google Scholar]
  3. Akerblom O., de Verdier C. H., Garby L., Högman C. Restoration of defective oxygen-transport function of stored red blood cells by addition of inosine. Scand J Clin Lab Invest. 1968;21(3):245–248. doi: 10.3109/00365516809076991. [DOI] [PubMed] [Google Scholar]
  4. Bellingham A. J., Huehns E. R. Compensation in haemolytic anaemias caused by abnormal haemoglobins. Nature. 1968 Jun 8;218(5145):924–926. doi: 10.1038/218924a0. [DOI] [PubMed] [Google Scholar]
  5. Benesch R. E., Benesch R., Yu C. I. The oxygenation of hemoglobin in the presence of 2,3-diphosphoglycerate. Effect of temperature, pH, ionic strength, and hemoglobin concentration. Biochemistry. 1969 Jun;8(6):2567–2571. doi: 10.1021/bi00834a046. [DOI] [PubMed] [Google Scholar]
  6. Benesch R., Benesch R. E., Enoki Y. The interaction of hemoglobin and its subunits with 2,3-diphosphoglycerate. Proc Natl Acad Sci U S A. 1968 Nov;61(3):1102–1106. doi: 10.1073/pnas.61.3.1102. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Benesch R., Benesch R. E. The effect of organic phosphates from the human erythrocyte on the allosteric properties of hemoglobin. Biochem Biophys Res Commun. 1967 Jan 23;26(2):162–167. doi: 10.1016/0006-291x(67)90228-8. [DOI] [PubMed] [Google Scholar]
  8. Benesch R., Benesch R. E., Yu C. I. Reciprocal binding of oxygen and diphosphoglycerate by human hemoglobin. Proc Natl Acad Sci U S A. 1968 Feb;59(2):526–532. doi: 10.1073/pnas.59.2.526. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Bookchin R. M., Gallop P. M. Structure of hemoglobin AIc: nature of the N-terminal beta chain blocking group. Biochem Biophys Res Commun. 1968 Jul 11;32(1):86–93. doi: 10.1016/0006-291x(68)90430-0. [DOI] [PubMed] [Google Scholar]
  10. Briehl R. W. Relations between aggregation of subunits and the oxygen equilibrium of human hemoglobin. J Biol Chem. 1970 Feb 10;245(3):538–543. [PubMed] [Google Scholar]
  11. Bromberg P. A., Jensen W. N. Blood oxygen dissociation curves in sickle cell disease. J Lab Clin Med. 1967 Sep;70(3):480–488. [PubMed] [Google Scholar]
  12. Bunn H. F., Jandl J. H. Exchange of heme among hemoglobins and between hemoglobin and albumin. J Biol Chem. 1968 Feb 10;243(3):465–475. [PubMed] [Google Scholar]
  13. Bunn H. F., May M. H., Kocholaty W. F., Shields C. E. Hemoglobin function in stored blood. J Clin Invest. 1969 Feb;48(2):311–321. doi: 10.1172/JCI105987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Chanutin A., Curnish R. R. Effect of organic and inorganic phosphates on the oxygen equilibrium of human erythrocytes. Arch Biochem Biophys. 1967 Jul;121(1):96–102. doi: 10.1016/0003-9861(67)90013-6. [DOI] [PubMed] [Google Scholar]
  15. Chanutin A., Curnish R. R. Effect of organic phosphates on the oxygen equilibrium of carboxypeptidase digests of human hemoglobin. Arch Biochem Biophys. 1968 Jan;123(1):163–165. doi: 10.1016/0003-9861(68)90114-8. [DOI] [PubMed] [Google Scholar]
  16. Charache S., Grisolia S., Fiedler A. J., Hellegers A. E. Effect of 2,3-diphosphoglycerate on oxygen affinity of blood in sickle cell anemia. J Clin Invest. 1970 Apr;49(4):806–812. doi: 10.1172/JCI106294. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Charache S., Weatherall D. J., Clegg J. B. Polycythemia associated with a hemoglobinopathy. J Clin Invest. 1966 Jun;45(6):813–822. doi: 10.1172/JCI105397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Delivoria-Papadopoulos M., Oski F. A., Gottlieb A. J. Oxygen-hemoglobulin dissociation curves: effect of inherited enzyme defects of the red cell. Science. 1969 Aug 8;165(3893):601–602. doi: 10.1126/science.165.3893.601. [DOI] [PubMed] [Google Scholar]
  19. Engel K., Duc G. Effect of iodoacetate and fluoride on the position of the haemoglobin oxygen dissociation curve of human whole blood. Nature. 1968 Aug 31;219(5157):936–938. doi: 10.1038/219936a0. [DOI] [PubMed] [Google Scholar]
  20. Garby L., Gerber G., De Verdier C. H. Binding of 2,3-diphosphoglycerate and adenosine triphosphate to human haemoglobin A. Eur J Biochem. 1969 Aug;10(1):110–115. doi: 10.1111/j.1432-1033.1969.tb00662.x. [DOI] [PubMed] [Google Scholar]
  21. HUISMAN T. H., MEYERING C. A. Studies on the heterogeneity of hemoglobin. I. The heterogeneity of different human hemoglobin types in carboxymethylcellulose and in amberlite IRC-50 chromatography qualitative aspects. Clin Chim Acta. 1960 Jan;5:103–123. doi: 10.1016/0009-8981(60)90098-x. [DOI] [PubMed] [Google Scholar]
  22. Hamilton H. B., Iuchi I., Miyaji T., Shibata S. Hemoglobin Hiroshima (beta-143 histidine--aspartic acid): a newly identified fast moving beta chain variant associated with increased oxygen affinity and compensatory erythremia. J Clin Invest. 1969 Mar;48(3):525–535. doi: 10.1172/JCI106010. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Holmquist W. R., Schroeder W. A. A new N-terminal blocking group involving a Schiff base in hemoglobin AIc. Biochemistry. 1966 Aug;5(8):2489–2503. doi: 10.1021/bi00872a002. [DOI] [PubMed] [Google Scholar]
  24. Huehns E. R. The properties and reactions of haemoglobin F(1) and their bearing on the dissociation equilibrium of haemoglobin. Biochem J. 1966 Dec;101(3):852–860. doi: 10.1042/bj1010852. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Huisman T. H., Dozy A. M. Studies on the heterogeneity of hemoglobin. IX. The use of Tris(hydroxymethyl)aminomethanehcl buffers in the anion-exchange chromatography of hemoglobins. J Chromatogr. 1965 Jul;19(1):160–169. doi: 10.1016/s0021-9673(01)99434-8. [DOI] [PubMed] [Google Scholar]
  26. Imai K. Oxygen-equilibrium characteristics of abnormal hemoglobin Hiroshima (alpha-2 beta-2 143 Asp). Arch Biochem Biophys. 1968 Sep 20;127(1):543–547. doi: 10.1016/0003-9861(68)90260-9. [DOI] [PubMed] [Google Scholar]
  27. Lenfant C., Torrance J., English E., Finch C. A., Reynafarje C., Ramos J., Faura J. Effect of altitude on oxygen binding by hemoglobin and on organic phosphate levels. J Clin Invest. 1968 Dec;47(12):2652–2656. doi: 10.1172/JCI105948. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Mihara K., Hayashi N., Kikuchi G., Shibata S. Oxygen equilibrium of hemoglobin Hiroshima. Biochem Biophys Res Commun. 1968 Sep 6;32(5):763–769. doi: 10.1016/0006-291x(68)90305-7. [DOI] [PubMed] [Google Scholar]
  29. Miwa I., Erdös E. G., Seki T. Presence of three peptides in urinary kinin (substance Z) preparations. Life Sci. 1968 Dec 15;7(24):1339–1343. doi: 10.1016/0024-3205(68)90265-8. [DOI] [PubMed] [Google Scholar]
  30. Muirhead H., Cox J. M., Mazzarella L., Perutz M. F. Structure and function of haemoglobin. 3. A three-dimensional fourier synthesis of human deoxyhaemoglobin at 5.5 Angstrom resolution. J Mol Biol. 1967 Aug 28;28(1):117–156. doi: 10.1016/s0022-2836(67)80082-2. [DOI] [PubMed] [Google Scholar]
  31. Nagel R. L., Gibson Q. H., Charache S. Relation between structure and function in Hemoglobin Chesapeake. Biochemistry. 1967 Aug;6(8):2395–2402. doi: 10.1021/bi00860a015. [DOI] [PubMed] [Google Scholar]
  32. Oski F. A., Gottlieb A. J., Delivoria-Papadopoulos M., Miller W. W. Red-cell 2,3-diphosphoglycerate levels in subjects with chronic hypoxemia. N Engl J Med. 1969 May 22;280(21):1165–1166. doi: 10.1056/NEJM196905222802108. [DOI] [PubMed] [Google Scholar]
  33. Perutz M. F., Muirhead H., Mazzarella L., Crowther R. A., Greer J., Kilmartin J. V. Identification of residues responsible for the alkaline Bohr effect in haemoglobin. Nature. 1969 Jun 28;222(5200):1240–1243. doi: 10.1038/2221240a0. [DOI] [PubMed] [Google Scholar]
  34. RIGGS A. The metamorphosis of hemoglobin in the bullfrog. J Gen Physiol. 1951 Sep;35(1):23–40. doi: 10.1085/jgp.35.1.23. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. SCHROEDER W. A., CUA J. T., MATSUDA G., FENNINGER W. D. Hemoglobin F1, an acetyl-containing hemoglobin. Biochim Biophys Acta. 1962 Oct 8;63:532–534. doi: 10.1016/0006-3002(62)90125-7. [DOI] [PubMed] [Google Scholar]
  36. Tyuma I., Shimizu K. Different response to organic phosphates of human fetal and adult hemoglobins. Arch Biochem Biophys. 1969 Jan;129(1):404–405. doi: 10.1016/0003-9861(69)90192-1. [DOI] [PubMed] [Google Scholar]
  37. de Verdier C. H., Garby L. Low binding of 2,3-diphosphoglycerate to haemoglobin F. A contribution to the knowledge of the binding site and an explanation for the high oxygen affinity of foetal blood. Scand J Clin Lab Invest. 1969 Apr;23(2):149–151. doi: 10.3109/00365516909077018. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES