Abstract
Pulsus alternans was induced in 11 anesthetized, open-chest dogs by rapid atrial pacing, and the left ventricular filling characteristics and length-tension-velocity relationship of alternating beats were compared. The end-diastolic circumferences (cire) of the strong beats were slightly, but significantly, increased over the weak beats (7.3 > 6.9 cm, P < 0.01), confirming that diastolic filling does alternate in pulsus alternans. This alternation in initial fiber length seemed to result from an alternation in the prior end-systolic length, rather than from an alternation in diastolic filling time or compliance. There was also no difference in end-diastolic tension as measured by an isometric strain gauge suggesting no difference in contractile element relaxation before weak and strong beats.
The contractile state of the strong beats was consistently greater than that of the weak beats when contractility was defined in terms of: (a) Vmax (3.13 > 2.53 circ/sec, P < 0.01); and (b) the velocity of circumferential fiber shortening (0.84 > 0.39 circ/sec, P < 0.001) and developed tension (82.5 > 74 g/cm, P < 0.01) at isolength. The length-tension-velocity relationship of the left ventricle also varied between strong and weak beats when: (a) the maximum velocity of contractile element shortening at least common tension (1.68 > 1.28 circ/sec, P < 0.05); and (b) the velocity of circumferential fiber shortening (0.81 > 0.39 circ/sec, P < 0.001) at maximum developed tension were examined. Analysis of the length-tension-velocity characteristics of sequential beats at the onset of alternans in three dogs suggests that an alternation in contractility initiates alternans, with secondary alternations in ventricular filling. Cross-clamping of the aorta in three other dogs essentially eliminated the alternating changes in end-diastolic length and pressure, while the resultant isovolumic contractions continued to demonstrate clear evidence of pulsus alternans in the ventricular systolic pressure, suggesting the persistance of an alternating contractile state. The evidence suggests that an important mechanism in the production and propagation of pulsus alternans, as produced in the intact canine ventricle by rapid pacing, is a beat-to-beat alternation in contractile state with secondary alternations in ventricular filling.
Full text
PDF











Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Badeer H. S., Ryo U. Y., Gassner W. F., Kass E. J., Cavaluzzi J., Gilbert J. L., Brooks C. M. Factors affecting pulsus alternans in the rapidly driven heart and papillary muscle. Am J Physiol. 1967 Nov;213(5):1095–1101. doi: 10.1152/ajplegacy.1967.213.5.1095. [DOI] [PubMed] [Google Scholar]
- Braunwald E., Frye R. L., Aygen M. M., Gilbert J. W. STUDIES ON STARLING'S LAW OF THE HEART. III. OBSERVATIONS IN PATIENTS WITH MITRAL STENOSIS AND ATRIAL FIBRILLATION ON THE RELATIONSHIPS BETWEEN LEFT VENTRICULAR END-DIASTOLIC SEGMENT LENGTH, FILLING PRESSURE, AND THE CHARACTERISTICS OF VENTRICULAR CONTRACTION. J Clin Invest. 1960 Dec;39(12):1874–1884. doi: 10.1172/JCI104211. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bravený P. The relation of alternating contractility of the heart to the inotropic effects of rhythm. Arch Int Physiol Biochim. 1964 Sep;72(4):553–566. doi: 10.3109/13813456409064096. [DOI] [PubMed] [Google Scholar]
- Cohn K. E., Sandler H., Hancock E. W. Mechanisms of pulsus alternans. Circulation. 1967 Sep;36(3):372–380. doi: 10.1161/01.cir.36.3.372. [DOI] [PubMed] [Google Scholar]
- Covell J. W., Ross J., Jr, Sonnenblick E. H., Braunwald E. Comparison of the force-velocity relation and the ventricular function curve as measures of the contractile state of the intact heart. Circ Res. 1966 Aug;19(2):364–372. doi: 10.1161/01.res.19.2.364. [DOI] [PubMed] [Google Scholar]
- Floyd W. L., Dillon M. L. Observations on sustained pulsus alternans during hypothermia. Am Heart J. 1967 Jun;73(6):765–776. doi: 10.1016/0002-8703(67)90228-1. [DOI] [PubMed] [Google Scholar]
- Forwand S. A., McIntyre K. M., Lipana J. G., Levine H. J. Active stiffness of the intact canine left ventricle. With observations on the effect of acute and chronic myocardial infarction. Circ Res. 1966 Nov;19(5):970–979. doi: 10.1161/01.res.19.5.970. [DOI] [PubMed] [Google Scholar]
- GLEASON W. L., BRAUNWALD E. Studies on Starling's law of the heart. VI. Relationships between left ventricular enddiatolic volume and stroke volume in man with observations on the mechanism of pulsus alternans. Circulation. 1962 May;25:841–848. doi: 10.1161/01.cir.25.5.841. [DOI] [PubMed] [Google Scholar]
- GLICK G., SONNENBLICK E. H., BRAUNWALD E. MYOCARDIAL FORCE-VELOCITY RELATIONS STUDIED IN INTACT UNANESTHETIZED MAN. J Clin Invest. 1965 Jun;44:978–988. doi: 10.1172/JCI105215. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gault J. H., Ross J., Jr, Braunwald E. Contractile state of the left ventricle in man: instantaneous tension-velocity-length relations in patients with and without disease of the left ventricular myocardium. Circ Res. 1968 Apr;22(4):451–463. doi: 10.1161/01.res.22.4.451. [DOI] [PubMed] [Google Scholar]
- Gilmore J. P., Powell W. J., Graham T. P., Clancy R. L. Discordant pulsus alternans in dog heart. Am J Physiol. 1967 Jun;212(6):1515–1518. doi: 10.1152/ajplegacy.1967.212.6.1515. [DOI] [PubMed] [Google Scholar]
- Goodman A. H. Electronic dynamic calibration of electromagnetic flowmeters. J Appl Physiol. 1966 May;21(3):933–937. doi: 10.1152/jappl.1966.21.3.933. [DOI] [PubMed] [Google Scholar]
- Greenspan K., Edmonds R. E., Fisch C. The relation of contractile enhancement to action potential change in canine myocardium. Circ Res. 1967 Mar;20(3):311–320. doi: 10.1161/01.res.20.3.311. [DOI] [PubMed] [Google Scholar]
- Guntheroth W. G., Morgan B. C., McGough G. A., Scher A. M. Alternate deletion and potentiation as the cause of pulsus alternans. Am Heart J. 1969 Nov;78(5):669–681. doi: 10.1016/0002-8703(69)90519-5. [DOI] [PubMed] [Google Scholar]
- HOGANCAMP C. E., KARDESCH M., DANFORTH W. H., BING R. J. Transmembrane electrical potentials in ventricular tachycardia and fibrillation. Am Heart J. 1959 Feb;57(2):214–222. doi: 10.1016/0002-8703(59)90068-7. [DOI] [PubMed] [Google Scholar]
- Harris L. C., Nghiem Q. X., Schreiber M. H., Wallace J. M. Severe pulsus alternans associated with primary myocardial disease in children. Observations on clinical features, hemodynamic findings. Mechanisms and prognosis. Circulation. 1966 Dec;34(6):948–961. doi: 10.1161/01.cir.34.6.948. [DOI] [PubMed] [Google Scholar]
- Hoffman B. F., Bassett A. L., Bartelstone H. J. Some mechanical properties of isolated mammalian cardiac muscle. Circ Res. 1968 Aug;23(2):291–312. doi: 10.1161/01.res.23.2.291. [DOI] [PubMed] [Google Scholar]
- KLEINFELD M., MAGIN J., STEIN E. Electrical alternans in single ventricular fibers of the frog heart. Am J Physiol. 1956 Sep;187(1):139–142. doi: 10.1152/ajplegacy.1956.187.1.139. [DOI] [PubMed] [Google Scholar]
- LENDRUM B., FEINBERG H., BOYD E., KATZ L. N. Rhythm effects on contractility of the beating isovolumic left ventricle. Am J Physiol. 1960 Dec;199:1115–1120. doi: 10.1152/ajplegacy.1960.199.6.1115. [DOI] [PubMed] [Google Scholar]
- LEVINE H. J., BRITMAN N. A. FORCE-VELOCITY RELATIONS IN THE INTACT DOG HEART. J Clin Invest. 1964 Jul;43:1383–1396. doi: 10.1172/JCI105014. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MUELLER P. OUABAIN EFFECTS ON CARDIAC CONTRACTION, ACTION POTENTIAL, AND CELLULAR POTASSIUM. Circ Res. 1965 Jul;17:46–56. doi: 10.1161/01.res.17.1.46. [DOI] [PubMed] [Google Scholar]
- Mitchell J. H., Sarnoff S. J., Sonnenblick E. H. THE DYNAMICS OF PULSUS ALTERNANS: ALTERNATING END-DIASTOLIC FIBER LENGTH AS A CAUSATIVE FACTOR. J Clin Invest. 1963 Jan;42(1):55–63. doi: 10.1172/JCI104696. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nayler W. G., Robertson P. G. Mechanical alternans and the staircase phenomenon in dog papillary muscle. Am Heart J. 1965 Oct;70(4):494–498. doi: 10.1016/0002-8703(65)90362-5. [DOI] [PubMed] [Google Scholar]
- Noble M. I., Milne E. N., Goerke R. J., Carlsson E., Domenech R. J., Saunders K. B., Hoffman J. I. Left ventricular filling and diastolic pressure-volume relations in the conscious dog. Circ Res. 1969 Feb;24(2):269–283. doi: 10.1161/01.res.24.2.269. [DOI] [PubMed] [Google Scholar]
- Prasad K., Callaghan J. C. Effect of replacement of potassium by rubidium on the transmembrane action potential and contractility of human papillary muscle. Circ Res. 1969 Feb;24(2):157–166. doi: 10.1161/01.res.24.2.157. [DOI] [PubMed] [Google Scholar]
- SLEATOR W., Jr, FURCHGOTT R. F., DE GUBAREFF T., KRESPI V. ACTION POTENTIALS OF GUINEA PIG ATRIA UNDER CONDITIONS WHICH ALTER CONTRACTION. Am J Physiol. 1964 Feb;206:270–282. doi: 10.1152/ajplegacy.1964.206.2.270. [DOI] [PubMed] [Google Scholar]
- SONNENBLICK E. H. INSTANTANEOUS FORCE-VELOCITY-LENGTH DETERMINANTS IN THE CONTRACTION OF HEART MUSCLE. Circ Res. 1965 May;16:441–451. doi: 10.1161/01.res.16.5.441. [DOI] [PubMed] [Google Scholar]
- SONNENBLICK E. H. SERIES ELASTIC AND CONTRACTILE ELEMENTS IN HEART MUSCLE: CHANGES IN MUSCLE LENGTH. Am J Physiol. 1964 Dec;207:1330–1338. doi: 10.1152/ajplegacy.1964.207.6.1330. [DOI] [PubMed] [Google Scholar]
- Stegall H. F., Kardon M. B., Stone H. L., Bishop V. S. A portable, simple sonomicrometer. J Appl Physiol. 1967 Aug;23(2):289–293. doi: 10.1152/jappl.1967.23.2.289. [DOI] [PubMed] [Google Scholar]
