Abstract
Active sodium transport (outflux or efflux) in red blood cells generally has been measured by assessing the amount of outflux inhibited by digitalis glycosides (outflux-fraction I). The presence of a ouabain-uninhibited sodium outflux (outflux-fraction II) attributable either to a second active transport mechanism or to exchange diffusion has been the subject of recent investigations. In the present study a variety of transport inhibitors, including ouabain, ethacrynic acid, furosemide, oligomycin, and amiloride, were studied for their effects on these components of sodium transport in RBC.
In the presence of ouabain both ethacrynic acid and furosemide exerted similar effects on sodium outflux, inhibiting approximately 0.5 mmoles/L of cells per hr. This component of sodium outflux has been called outflux-fraction II. Ethacrynic acid showed no inhibitory potency when ouabain and furosemide were present, thereby suggesting that the same outflux component (fraction II) was affected by ethacrynic acid and by furosemide. In addition, furosemide reduced sodium influx to the same extent that it reduced sodium outflux. Outflux-fraction II, as defined by furosemide, did not contribute a net sodium outflux. These results of sodium outflux and influx experiments confirm the existence of a transport pathway which does not contribute to net flux and which fits the definition of exchange diffusion.
The inhibitory effect of furosemide on outflux-fraction II remained despite the use of a sulfhydryl protective reagent, whereas the effect of ethacrynic acid was obliterated. No combination of inhibitors was found which affected the residual or uninhibited sodium outflux (0.4-0.5 mmoles/liter of cells per hr). Oligomycin possessed an inhibitory potency less than that of ouabain, and it exerted no effect on sodium outflux if it was superimposed upon ouabain inhibition. Amiloride proved to be a very weak inhibitor of sodium outflux in human erythrocytes.
Full text
PDF










Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Balfe J. W., Cole C., Welt L. G. Red-cell transport defect in patients with cystic fibrosis and in their parents. Science. 1968 Nov 8;162(3854):689–690. doi: 10.1126/science.162.3854.689. [DOI] [PubMed] [Google Scholar]
- Bank N. Physiological basis of diuretic action. Annu Rev Med. 1968;19:103–118. doi: 10.1146/annurev.me.19.020168.000535. [DOI] [PubMed] [Google Scholar]
- Bittar E. E., Dick D. A., Fry D. J. The action of ethacrynic acid on sodium efflux from single toad oocytes. J Physiol. 1968 Jun;196(3):693–701. doi: 10.1113/jphysiol.1968.sp008530. [DOI] [PMC free article] [PubMed] [Google Scholar]
- CLELAND W. W. DITHIOTHREITOL, A NEW PROTECTIVE REAGENT FOR SH GROUPS. Biochemistry. 1964 Apr;3:480–482. doi: 10.1021/bi00892a002. [DOI] [PubMed] [Google Scholar]
- Daniel E. E. The effects of new diuretics on net ion movements in sodium-rich smooth muscles. Can J Physiol Pharmacol. 1967 Jan;45(1):149–159. doi: 10.1139/y67-015. [DOI] [PubMed] [Google Scholar]
- Dunn M. J. Alterations of red blood cell sodium transport during malarial infection. J Clin Invest. 1969 Apr;48(4):674–684. doi: 10.1172/JCI106025. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GLYNN I. M. TRANSPORT ADENOSINETRIPHOSPHATASE' IN ELECTRIC ORGAN. THE RELATION BETWEEN ION TRANSPORT AND OXIDATIVE PHOSPHORYLATION. J Physiol. 1963 Nov;169:452–465. doi: 10.1113/jphysiol.1963.sp007272. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GLYNN I. M. The action of cardiac glycosides on sodium and potassium movements in human red cells. J Physiol. 1957 Apr 3;136(1):148–173. doi: 10.1113/jphysiol.1957.sp005749. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Garrahan P. J., Glynn I. M. The behaviour of the sodium pump in red cells in the absence of external potassium. J Physiol. 1967 Sep;192(1):159–174. doi: 10.1113/jphysiol.1967.sp008294. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Guerra L., Klahr S., Beauman W., Marchena C., Bourgoignie J., Bricker N. S. Effects of oligomycin on anaerobic sodium transport and metabolism in shark erythrocytes. Am J Physiol. 1969 Nov;217(5):1292–1297. doi: 10.1152/ajplegacy.1969.217.5.1292. [DOI] [PubMed] [Google Scholar]
- Herms W., Jaedicke W. Der Einflub von Diuretica auf Elektrolyt- und Wassergehalt menschlicher Erythrocyten. Klin Wochenschr. 1968 Feb 15;46(4):194–199. doi: 10.1007/BF01746232. [DOI] [PubMed] [Google Scholar]
- Hoffman J. F., Kregenow F. M. The characterization of new energy dependent cation transport processes in red blood cells. Ann N Y Acad Sci. 1966 Jul 14;137(2):566–576. doi: 10.1111/j.1749-6632.1966.tb50182.x. [DOI] [PubMed] [Google Scholar]
- Hoffman J. F. The red cell membrane and the transport of sodium and potassium. Am J Med. 1966 Nov;41(5):666–680. doi: 10.1016/0002-9343(66)90029-5. [DOI] [PubMed] [Google Scholar]
- Keynes R. D., Steinhardt R. A. The components of the sodium efflux in frog muscle. J Physiol. 1968 Oct;198(3):581–599. doi: 10.1113/jphysiol.1968.sp008627. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Klahr S., Shaw A. B., Hwang K. H., Miller C. L. Sodium transport in turtle erythrocytes. Apparent stimulation of exchange diffusion by anaerobiosis. J Gen Physiol. 1969 Oct;54(4):479–493. doi: 10.1085/jgp.54.4.479. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Leblanc G., Erlij D. Effects of ethacrynic acid on sodium fluxes in frog sartorius muscle. Biochim Biophys Acta. 1969 Jan 28;173(1):149–151. doi: 10.1016/0005-2736(69)90047-9. [DOI] [PubMed] [Google Scholar]
- Lubowitz H., Whittam R. Ion movements in human red cells independent of the sodium pump. J Physiol. 1969 May;202(1):111–131. doi: 10.1113/jphysiol.1969.sp008798. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rettori O., Rettori V., Maloney J. V., Villamil M. F. Sodium efflux in rabbit erythrocytes. Am J Physiol. 1969 Aug;217(2):605–608. doi: 10.1152/ajplegacy.1969.217.2.605. [DOI] [PubMed] [Google Scholar]
- SORENSON A. L., KIRSCHNER L. B., BARKER J. Sodium fluxes in the erythrocytes of swine, ox, and dog. J Gen Physiol. 1962 Jul;45:1031–1047. doi: 10.1085/jgp.45.6.1031. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sachs J. R., Conrad M. E. Effect of tetraethylammonium on the active cation transport system of the red blood cell. Am J Physiol. 1968 Oct;215(4):795–798. doi: 10.1152/ajplegacy.1968.215.4.795. [DOI] [PubMed] [Google Scholar]
- Sachs J. R., Welt L. G. Concentration dependence of active potassium transport in the human red blood cell in the presence of inhibitors. J Clin Invest. 1968 Apr;47(4):949–959. doi: 10.1172/JCI105787. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sachs J. R., Welt L. G. The concentration dependence of active potassium transport in the human red blood cell. J Clin Invest. 1967 Jan;46(1):65–76. doi: 10.1172/JCI105512. [DOI] [PMC free article] [PubMed] [Google Scholar]
- TOSTESON D. C., HOFFMAN J. F. Regulation of cell volume by active cation transport in high and low potassium sheep red cells. J Gen Physiol. 1960 Sep;44:169–194. doi: 10.1085/jgp.44.1.169. [DOI] [PMC free article] [PubMed] [Google Scholar]
- USSING H. H. Transport of ions across cellular membranes. Physiol Rev. 1949 Apr;29(2):127–155. doi: 10.1152/physrev.1949.29.2.127. [DOI] [PubMed] [Google Scholar]
- Villamil M. F., Kleeman C. R. The effect of ouabain and external potassium on the ion transport of rabbit red cells. J Gen Physiol. 1969 Nov;54(5):576–588. doi: 10.1085/jgp.54.5.576. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WHITTAM R., WHEELER K. P., BLAKE A. OLIGOMYCIN AND ACTIVE TRANSPORT REACTIONS IN CELL MEMBRANES. Nature. 1964 Aug 15;203:720–724. doi: 10.1038/203720a0. [DOI] [PubMed] [Google Scholar]
- Welt L. G. A further evaluation of erythrocyte sodium transport in control subjects and patients with uremia. Nephron. 1969;6(3):406–417. doi: 10.1159/000179742. [DOI] [PubMed] [Google Scholar]
- Wessels F. Der Einfluss von Etacrynsäure und Amilorid auf den Natriumtransport der Erythrocyten des Menschen in vitro. Arzneimittelforschung. 1969 Dec;19(12):1959–1961. [PubMed] [Google Scholar]
- Whittembury G., Fishman J. Relation between cell Na extrusion and transtubular absorption in the perfused toad kidney: the effect of K, ouabain and ethacrynic acid. Pflugers Arch. 1969;307(3):138–153. doi: 10.1007/BF00592080. [DOI] [PubMed] [Google Scholar]
- Whittembury G. Sodium and water transport in kidney proximal tubular cells. J Gen Physiol. 1968 May;51(5 Suppl):303S+–303S+. [PubMed] [Google Scholar]
- Wiley J. S. Inheritance of an increased sodium pump in human red cells. Nature. 1969 Mar 29;221(5187):1222–1224. doi: 10.1038/2211222a0. [DOI] [PubMed] [Google Scholar]