Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1970 Dec;49(12):2336–2344. doi: 10.1172/JCI106452

Effects of increased sodium delivery on distal tubular sodium reabsorption with and without volume expansion in man

Vardaman M Buckalew Jr 1, Barry R Walker 1, Jules B Puschett 1, Martin Goldberg 1
PMCID: PMC322734  PMID: 5480858

Abstract

The separate effects of volume expansion and of increased delivery of sodium on sodium reabsorption in the diluting segment of the distal nephron were studied in man. In six normal subjects during a sustained water diuresis, sodium delivery to the distal nephron was increased without volume expansion by the administration of acetazolamide. In these subjects, free water clearance rose linearly as a function of urine flow. In five patients with complete, central diabetes insipidus, distal sodium delivery was increased by the infusion of hypertonic saline during a sustained water diuresis. In four of these five patients, changes in free water clearance were also observed during hypertonic saline diuresis in the presence of distal blockade of sodium reabsorption with chlorothiazide. At high rates of distal delivery the following observations were made: (a) free water clearance was lower and fractional sodium excretion higher during saline diuresis compared to acetazolamide diuresis; (b) although free water clearance was moderately reduced by chlorothiazide at low rates of urine flow, there was no difference in free water clearance between saline loading alone and saline plus chlorothiazide at high rates of urine flow; and (c) during saline loading free water clearance rose without evidence of a limit when increased distal delivery was accompanied by spontaneous increases in glomerular filtration rate, but tended toward a limit when glomerular filtration rate remained constant.

The data indicate that during acute volume expansion with saline, there is a decrease in the fraction of delivered sodium reabsorbed in the distal nephron when compared to the response of the distal nephron to comparable increases in distal sodium delivery in the absence of volume expansion.

Full text

PDF
2336

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BERLINER R. W., DAVIDSON D. G. Production of hypertonic urine in the absence of pituitary antidiuretic hormone. J Clin Invest. 1957 Oct;36(10):1416–1427. doi: 10.1172/JCI103541. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Buckalew V. M., Jr, Martinez F. J., Green W. E. The effect of dialysates and ultrafiltrates of plasma of saline-loaded dogs on toad bladder sodium transport. J Clin Invest. 1970 May;49(5):926–935. doi: 10.1172/JCI106312. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Buckalew V. M., Jr, Puschett J. B., Kintzel J. E., Goldberg M. Mechanism of exaggerated natriuresis in hypertensive man: impaired sodium transport in the loop of Henle. J Clin Invest. 1969 Jun;48(6):1007–1016. doi: 10.1172/JCI106057. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Buckalew V. M., Jr, Ramirez M. A., Goldberg M. Free water reabsorption during solute diuresis in normal and potassium-depleted rats. Am J Physiol. 1967 Feb;212(2):381–386. doi: 10.1152/ajplegacy.1967.212.2.381. [DOI] [PubMed] [Google Scholar]
  5. Cortney M. A., Mylle M., Lassiter W. E., Gottschalk C. W. Renal tubular transport of water, solute, and PAH in rats loaded with isotonic saline. Am J Physiol. 1965 Dec;209(6):1199–1205. doi: 10.1152/ajplegacy.1965.209.6.1199. [DOI] [PubMed] [Google Scholar]
  6. DIRKS J. H., CIRKSENA W. J., BERLINER R. W. THE EFFECTS OF SALINE INFUSION ON SODIUM REABSORPTION BY THE PROXIMAL TUBULE OF THE DOG. J Clin Invest. 1965 Jul;44:1160–1170. doi: 10.1172/JCI105223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. EARLEY L. E., KAHN M., ORLOFF J. The effects of infusions of chlorothiazide on urinary dilution and concentration in the dog. J Clin Invest. 1961 May;40:857–866. doi: 10.1172/JCI104320. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Earley L. E., Martino J. A., Friedler R. M. Factors affecting sodium reabsorption by the proximal tubule as determined during blockade of distal sodium reabsorption. J Clin Invest. 1966 Nov;45(11):1668–1684. doi: 10.1172/JCI105474. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Eknoyan G., Suki W. N., Rector F. C., Jr, Seldin D. W. Functional characteristics of the diluting segment of the dog nephron and the effect of extracellular volume expansion on its reabsorptive capacity. J Clin Invest. 1967 Jul;46(7):1178–1188. doi: 10.1172/JCI105611. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. GIEBISCH G., KLOSE R. M., WINDHAGER E. E. MICROPUNCTURE STUDY OF HYPERTONIC SODIUM CHLORIDE LOADING IN THE RAT. Am J Physiol. 1964 Apr;206:687–693. doi: 10.1152/ajplegacy.1964.206.4.687. [DOI] [PubMed] [Google Scholar]
  11. GOLDBERG M. Abnormalities in the renal excretion of water. Pathophysiology and differential diagnosis. Med Clin North Am. 1963 Jul;47:915–933. doi: 10.1016/s0025-7125(16)33550-7. [DOI] [PubMed] [Google Scholar]
  12. GOLDBERG M., MCCURDY D. K., FOLTZ E. L., BLUEMLE L. W., Jr EFFECTS OF ETHACRYNIC ACID (A NEW SALURETIC AGENT) ON RENAL DILUTING AND CONCENTRATING MECHANISMS: EVIDENCE FOR SITE OF ACTION IN THE LOOP OF HENLE. J Clin Invest. 1964 Feb;43:201–216. doi: 10.1172/JCI104905. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. GOLDBERG M., MCCURDY D. K., RAMIREZ M. A. DIFFERENCES BETWEEN SALINE AND MANNITOL DIURESIS IN HYDROPENIC MAN. J Clin Invest. 1965 Feb;44:182–192. doi: 10.1172/JCI105133. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. GOTTSCHALK C. W., MYLLE M. Micropuncture study of the mammalian urinary concentrating mechanism: evidence for the countercurrent hypothesis. Am J Physiol. 1959 Apr;196(4):927–936. doi: 10.1152/ajplegacy.1959.196.4.927. [DOI] [PubMed] [Google Scholar]
  15. Howards S. S., Davis B. B., Knox F. G., Wright F. S., Berliner R. W. Depression of fractional sodium reabsorption by the proximal tubule of the dog without sodium diuresis. J Clin Invest. 1968 Jul;47(7):1561–1572. doi: 10.1172/JCI105848. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. LASSITER W. E., MYLLE M., GOTTSCHALK C. W. NET TRANSTUBULAR MOVEMENT OF WATER AND UREA IN SALINE DIURESIS. Am J Physiol. 1964 Apr;206:669–673. doi: 10.1152/ajplegacy.1964.206.4.669. [DOI] [PubMed] [Google Scholar]
  17. Landwehr D. M., Klose R. M., Giebisch G. Renal tubular sodium and water reabsorption in the isotonic sodium chloride-loaded rat. Am J Physiol. 1967 Jun;212(6):1327–1333. doi: 10.1152/ajplegacy.1967.212.6.1327. [DOI] [PubMed] [Google Scholar]
  18. Lewy J. E., Windhager E. E. Peritubular control of proximal tubular fluid reabsorption in the rat kidney. Am J Physiol. 1968 May;214(5):943–954. doi: 10.1152/ajplegacy.1968.214.5.943. [DOI] [PubMed] [Google Scholar]
  19. Martino J. A., Earley L. E. Demonstraton of a role of physical factors as determinants of the natriuretic response to volume expansion. J Clin Invest. 1967 Dec;46(12):1963–1978. doi: 10.1172/JCI105686. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Pitts R. F., Ayer J. L., Schiess W. A., Miner P. THE RENAL REGULATION OF ACID-BASE BALANCE IN MAN. III. THE REABSORPTION AND EXCRETION OF BICARBONATE. J Clin Invest. 1949 Jan;28(1):35–44. doi: 10.1172/JCI102050. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Rector F. C., Jr, Sellman J. C., Martinez-Maldonado M., Seldin D. W. The mechanism of suppression of proximal tubular reabsorption by saline infusions. J Clin Invest. 1967 Jan;46(1):47–56. doi: 10.1172/JCI105510. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Schnermann J. Microperfusion study of single short loops of Henle in rat kidney. Pflugers Arch Gesamte Physiol Menschen Tiere. 1968;300(4):255–282. doi: 10.1007/BF00364298. [DOI] [PubMed] [Google Scholar]
  23. Sealey J. E., Kirshman J. D., Laragh J. H. Natriuretic activity in plasma and urine of salt-loaded man and sheep. J Clin Invest. 1969 Dec;48(12):2210–2224. doi: 10.1172/JCI106187. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Stein R. M., Abramson R. G., Kahn T., Levitt M. F. Effects of hypotonic saline loading in hydrated dog: evidence for a saline-induced limit on distal tubular sodium transport. J Clin Invest. 1967 Jul;46(7):1205–1214. doi: 10.1172/JCI105614. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Winghager E. E. Glomerulo-tubular balance of sale and water. Physiologist. 1968 May;11(2):103–114. [PubMed] [Google Scholar]
  26. van Liew J. B., Deetjen P., Boylan J. W. Glucose reabsorption in the rat kidney. Dependence on glomerular filtration. Pflugers Arch Gesamte Physiol Menschen Tiere. 1967;295(3):232–244. doi: 10.1007/BF01844103. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES