Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1986 Jan;83(1):95–99. doi: 10.1073/pnas.83.1.95

Lateral diffusion of phospholipids in the plasma membrane of soybean protoplasts: Evidence for membrane lipid domains

Thomas N Metcalf III 1, John L Wang 1, Melvin Schindler 1,*
PMCID: PMC322798  PMID: 16593643

Abstract

Fluorescent lipid and phospholipid probes were incorporated at 4°C into soybean protoplasts prepared from cultured soybean (SB-1) cells. Fluorescence microscopy showed that the plasma membrane as well as the nucleus were labeled. Fluorescence redistribution after photobleaching (FRAP) analysis was performed on these cells at 18°C to monitor the lateral mobility of the incorporated probes. After labeling at low concentrations (40 μg/ml) of phosphatidyl-N-(4-nitrobenzo-2-oxa-1,3-diazolyl)ethanolamine (NBD-PtdEtn), a single mobile component was observed with a diffusion coefficient (D) of ≈3 × 10-9 cm2/sec. After labeling at higher probe concentrations (≥100 μg/ml), two diffusing species were observed, with diffusion coefficients of ≈3 × 10-9 cm2/sec (“fast”) and ≈5 × 10-10 cm2/sec (“slow”). Similar results were observed with fluorescent derivatives of phosphatidylcholine and fatty acids. In contrast to these results, parallel analysis of 3T3 fibroblasts, using the same probes and conditions, yielded only a single diffusion component. These results suggest that the soybean plasma membrane may contain two distinct lipid domains in terms of lipid mobility. Consistent with this idea, experiments with soybean protoplasts yielded a single diffusion component under the following conditions: (i) labeling with NBD-PtdEtn (100 μg/ml), FRAP analysis at 37°C (D = 1.1 × 10-8 cm2/sec); (ii) labeling with NBD-PtdEtn (100 μg/ml), FRAP analysis at 18°C in the presence of 2 mM EGTA (D = 4.2 × 10-9 cm2/sec); (iii) labeling with 5-(N-dodecanoyl)aminofluorescein (a short-chain lipid probe), FRAP analysis at 18°C or 37°C (D = 2.5 × 10-8 cm2/sec). These results suggest that the plasma membrane of soybean cells may contain stable immiscible domains of fluid and gel-like lipids.

Keywords: diffusion coefficient, fluorescence redistribution after photobleaching

Full text

PDF
95

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brasitus T. A., Tall A. R., Schachter D. Thermotropic transitions in rat intestinal plasma membranes studied by differential scanning calorimetry and fluorescence polarization. Biochemistry. 1980 Mar 18;19(6):1256–1261. doi: 10.1021/bi00547a033. [DOI] [PubMed] [Google Scholar]
  2. Denning G. M., Figard P. H., Spector A. A. Effect of fatty acid modification on prostaglandin production by cultured 3T3 cells. J Lipid Res. 1982 May;23(4):584–596. [PubMed] [Google Scholar]
  3. Derzko Z., Jacobson K. Comparative lateral diffusion of fluorescent lipid analogues in phospholipid multibilayers. Biochemistry. 1980 Dec 23;19(26):6050–6057. doi: 10.1021/bi00567a016. [DOI] [PubMed] [Google Scholar]
  4. Dragsten P. R., Blumenthal R., Handler J. S. Membrane asymmetry in epithelia: is the tight junction a barrier to diffusion in the plasma membrane? Nature. 1981 Dec 24;294(5843):718–722. doi: 10.1038/294718a0. [DOI] [PubMed] [Google Scholar]
  5. Ethier M. F., Wolf D. E., Melchior D. L. Calorimetric investigation of the phase partitioning of the fluorescent carbocyanine probes in phosphatidylcholine bilayers. Biochemistry. 1983 Mar 1;22(5):1178–1182. doi: 10.1021/bi00274a029. [DOI] [PubMed] [Google Scholar]
  6. Golan D. E., Alecio M. R., Veatch W. R., Rando R. R. Lateral mobility of phospholipid and cholesterol in the human erythrocyte membrane: effects of protein-lipid interactions. Biochemistry. 1984 Jan 17;23(2):332–339. doi: 10.1021/bi00297a024. [DOI] [PubMed] [Google Scholar]
  7. Gottfried E. L. Lipids of human leukocytes: relation to celltype. J Lipid Res. 1967 Jul;8(4):321–327. [PubMed] [Google Scholar]
  8. Hochman J., Ferguson-Miller S., Schindler M. Mobility in the mitochondrial electron transport chain. Biochemistry. 1985 May 7;24(10):2509–2516. doi: 10.1021/bi00331a017. [DOI] [PubMed] [Google Scholar]
  9. Hodges T. K., Leonard R. T., Bracker C. E., Keenan T. W. Purification of an ion-stimulated adenosine triphosphatase from plant roots: association with plasma membranes. Proc Natl Acad Sci U S A. 1972 Nov;69(11):3307–3311. doi: 10.1073/pnas.69.11.3307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hui S. W., Parsons D. F. Direct observation of domains in wet lipid bilayers. Science. 1975 Oct 24;190(4212):383–384. doi: 10.1126/science.1179216. [DOI] [PubMed] [Google Scholar]
  11. Jacobson K., Hou Y., Derzko Z., Wojcieszyn J., Organisciak D. Lipid lateral diffusion in the surface membrane of cells and in multibilayers formed from plasma membrane lipids. Biochemistry. 1981 Sep 1;20(18):5268–5275. doi: 10.1021/bi00521a027. [DOI] [PubMed] [Google Scholar]
  12. Karnovsky M. J., Kleinfeld A. M., Hoover R. L., Klausner R. D. The concept of lipid domains in membranes. J Cell Biol. 1982 Jul;94(1):1–6. doi: 10.1083/jcb.94.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Klausner R. D., Wolf D. E. Selectivity of fluorescent lipid analogues for lipid domains. Biochemistry. 1980 Dec 23;19(26):6199–6203. doi: 10.1021/bi00567a039. [DOI] [PubMed] [Google Scholar]
  14. Koppel D. E., Sheetz M. P., Schindler M. Lateral diffusion in biological membranes. A normal-mode analysis of diffusion on a spherical surface. Biophys J. 1980 Apr;30(1):187–192. doi: 10.1016/S0006-3495(80)85087-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Metcalf T. N., 3rd, Wang J. L., Schubert K. R., Schindler M. Lectin receptors on the plasma membrane of soybean cells. Binding and lateral diffusion of lectins. Biochemistry. 1983 Aug 2;22(16):3969–3975. doi: 10.1021/bi00285a037. [DOI] [PubMed] [Google Scholar]
  16. Morré D. J., Gripshover B., Monroe A., Morré J. T. Phosphatidylinositol turnover in isolated soybean membranes stimulated by the synthetic growth hormone 2,4-dichlorophenoxyacetic acid. J Biol Chem. 1984 Dec 25;259(24):15364–15368. [PubMed] [Google Scholar]
  17. Mühlebach T., Cherry R. J. Influence of cholesterol on the rotation and self-association of band 3 in the human erythrocyte membrane. Biochemistry. 1982 Aug 31;21(18):4225–4228. doi: 10.1021/bi00261a006. [DOI] [PubMed] [Google Scholar]
  18. Onishi S., Ito T. Calcium-induced phase separations in phosphatidylserine--phosphatidylcholine membranes. Biochemistry. 1974 Feb 26;13(5):881–887. doi: 10.1021/bi00702a008. [DOI] [PubMed] [Google Scholar]
  19. Osborn M. J., Gander J. E., Parisi E., Carson J. Mechanism of assembly of the outer membrane of Salmonella typhimurium. Isolation and characterization of cytoplasmic and outer membrane. J Biol Chem. 1972 Jun 25;247(12):3962–3972. [PubMed] [Google Scholar]
  20. Owicki J. C., McConnell H. M. Lateral diffusion in inhomogeneous membranes. Model membranes containing cholesterol. Biophys J. 1980 Jun;30(3):383–397. doi: 10.1016/S0006-3495(80)85103-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Peters R. Translational diffusion in the plasma membrane of single cells as studied by fluorescence microphotolysis. Cell Biol Int Rep. 1981 Aug;5(8):733–760. doi: 10.1016/0309-1651(81)90231-9. [DOI] [PubMed] [Google Scholar]
  22. Quinn P. J., Chapman D. The dynamics of membrane structure. CRC Crit Rev Biochem. 1980;8(1):1–117. doi: 10.3109/10409238009105466. [DOI] [PubMed] [Google Scholar]
  23. Rubenstein J. L., Smith B. A., McConnell H. M. Lateral diffusion in binary mixtures of cholesterol and phosphatidylcholines. Proc Natl Acad Sci U S A. 1979 Jan;76(1):15–18. doi: 10.1073/pnas.76.1.15. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Segal P., Gidez L. I., Vega G. L., Edelstein D., Eder H. A., Roheim P. S. Apoproteins of high density lipoproteins in the urine of normal subjects. J Lipid Res. 1979 Aug;20(6):772–783. [PubMed] [Google Scholar]
  25. Sleight R. G., Pagano R. E. Rapid appearance of newly synthesized phosphatidylethanolamine at the plasma membrane. J Biol Chem. 1983 Aug 10;258(15):9050–9058. [PubMed] [Google Scholar]
  26. Steck P. A., Voss P. G., Wang J. L. Growth control in cultured 3T3 fibroblasts. Assays of cell proliferation and demonstration of a growth inhibitory activity. J Cell Biol. 1979 Dec;83(3):562–575. doi: 10.1083/jcb.83.3.562. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Stier A., Sackmann E. Spin labels as enzyme substrates. Heterogeneous lipid distribution in liver microsomal membranes. Biochim Biophys Acta. 1973 Jul 6;311(3):400–408. doi: 10.1016/0005-2736(73)90320-9. [DOI] [PubMed] [Google Scholar]
  28. Struck D. K., Pagano R. E. Insertion of fluorescent phospholipids into the plasma membrane of a mammalian cell. J Biol Chem. 1980 Jun 10;255(11):5404–5410. [PubMed] [Google Scholar]
  29. Travis R. L., Berkowitz R. L. Characterization of Soybean Plasma Membrane during Development: FREE STEROL COMPOSITION AND CONCANAVALIN A BINDING STUDIES. Plant Physiol. 1980 May;65(5):871–879. doi: 10.1104/pp.65.5.871. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Verkleij A. J., de Kruyff B., Ververgaert P. H., Tocanne J. F., van Deenen L. L. The influence of pH, Ca2+ and protein on the thermotropic behaviour of the negatively charged phospholipid, phosphatidylglycerol. Biochim Biophys Acta. 1974 Mar 29;339(3):432–437. doi: 10.1016/0005-2736(74)90171-0. [DOI] [PubMed] [Google Scholar]
  31. Wolf D. E., Kinsey W., Lennarz W., Edidin M. Changes in the organization of the sea urchin egg plasma membrane upon fertilization: indications from the lateral diffusion rates of lipid-soluble fluorescent dyes. Dev Biol. 1981 Jan 15;81(1):133–138. doi: 10.1016/0012-1606(81)90355-9. [DOI] [PubMed] [Google Scholar]
  32. Wolf D. E., Voglmayr J. K. Diffusion and regionalization in membranes of maturing ram spermatozoa. J Cell Biol. 1984 May;98(5):1678–1684. doi: 10.1083/jcb.98.5.1678. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES