Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1986 Feb;83(3):720–724. doi: 10.1073/pnas.83.3.720

Multiple purine pathway enzyme activities are encoded at a single genetic locus in Drosophila.

S Henikoff, M A Keene, J S Sloan, J Bleskan, R Hards, D Patterson
PMCID: PMC322936  PMID: 3080748

Abstract

The Drosophila melanogaster Gart locus, known from previous work to encode the enzyme activity phosphoribosylglycinamide formyltransferase (GART), specifies two alternatively processed mRNAs and two proteins. We introduced the entire Gart locus into a Drosophila tissue culture cell line in which the locus is active. The resulting cell clones contained numerous copies of the locus and overproduced both mRNAs and both expected proteins, thus markedly facilitating analysis of these molecules. We assayed extracts of the clones for the activities of 10 enzymes important for de novo purine synthesis and found that, in addition to GART, two other purine pathway activities, phosphoribosylamine-glycine ligase (phosphoribosylglycinamide synthetase, GARS) and phosphoribosylformylglycinamidine cyclo-ligase (phosphoribosylaminoimidazole synthetase, AIRS), are similarly overproduced. All three activities are present together on the larger overproduced protein. A smaller protein appears to possess only GARS activity. Therefore, alternative mRNA processing can allow cells to produce enzyme activities in forms that are either linked or unlinked to other activities.

Full text

PDF
720

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bisson L. F., Thorner J. Thymidylate synthetase from Saccharomyces cerevisiae. Purification and enzymic properties. J Biol Chem. 1981 Dec 10;256(23):12456–12462. [PubMed] [Google Scholar]
  2. Bourouis M., Jarry B. Vectors containing a prokaryotic dihydrofolate reductase gene transform Drosophila cells to methotrexate-resistance. EMBO J. 1983;2(7):1099–1104. doi: 10.1002/j.1460-2075.1983.tb01552.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Braman J. C., Black M. J., Mangum J. H. Serine transhydroxymethylase: a simplified radioactive assay; purification and stabilization of enzyme activity employing Affi-Gel Blue. Prep Biochem. 1981;11(1):23–32. doi: 10.1080/00327488108068723. [DOI] [PubMed] [Google Scholar]
  4. Chadefaux B., Allard D., Rethoré M. O., Raoul O., Poissonnier M., Gilgenkrantz S., Cheruy C., Jérôme H. Assignment of human phosphoribosylglycinamide synthetase locus to region 21q221. Hum Genet. 1984;66(2-3):190–192. doi: 10.1007/BF00286599. [DOI] [PubMed] [Google Scholar]
  5. Falkenthal S., Lengyel J. A. Measurement of ribonucleotide pool specific activities by an in vivo method: comparison with an in vitro method. Biochemistry. 1981 Jan 20;20(2):312–319. doi: 10.1021/bi00505a013. [DOI] [PubMed] [Google Scholar]
  6. Fluri R., Coddington A., Flury U. The product of the ade1: gene in Schizosaccharomyces pombe: a bifunctional enzyme catalysing two distinct steps in purine biosynthesis. Mol Gen Genet. 1976 Sep 23;147(3):271–282. doi: 10.1007/BF00582878. [DOI] [PubMed] [Google Scholar]
  7. Henikoff S. Cloning exons of mapping of transcription: characterization of the Drosophila melanogaster alcohol dehydrogenase gene. Nucleic Acids Res. 1983 Jul 25;11(14):4735–4752. doi: 10.1093/nar/11.14.4735. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Henikoff S., Furlong C. E. Sequence of a Drosophila DNA segment that functions in Saccharomyces cerevisiae and its regulation by a yeast promoter. Nucleic Acids Res. 1983 Feb 11;11(3):789–800. doi: 10.1093/nar/11.3.789. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Henikoff S., Sloan J. S., Kelly J. D. A Drosophila metabolic gene transcript is alternatively processed. Cell. 1983 Sep;34(2):405–414. doi: 10.1016/0092-8674(83)90374-4. [DOI] [PubMed] [Google Scholar]
  10. Henikoff S., Tatchell K., Hall B. D., Nasmyth K. A. Isolation of a gene from Drosophila by complementation in yeast. Nature. 1981 Jan 1;289(5793):33–37. doi: 10.1038/289033a0. [DOI] [PubMed] [Google Scholar]
  11. Jones C., Patterson D., Kao F. T. Assignment of the gene coding for phosphoribosylglycineamide formyltransferase to human chromosome 14. Somatic Cell Genet. 1981 Jul;7(4):399–409. doi: 10.1007/BF01542985. [DOI] [PubMed] [Google Scholar]
  12. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  13. Martin D. W., Jr Radioassay for enzymic production of glutamate from glutamine. Anal Biochem. 1972 Mar;46(1):239–243. doi: 10.1016/0003-2697(72)90417-4. [DOI] [PubMed] [Google Scholar]
  14. Nash D., Henderson J. F. The biochemistry and genetics of purine metabolism in Drosophila melanogaster. Adv Comp Physiol Biochem. 1982;8:2–51. [PubMed] [Google Scholar]
  15. Oates D. C., Patterson D. Biochemical genetics of Chinese hamster cell mutants with deviant purine metabolism: characterization of Chinese hamster cell mutants defective in phosphoribosylpyrophosphate amidotransferase and phosphoribosylglycinamide synthetase and an examination of alternatives to the first step of purine biosynthesis. Somatic Cell Genet. 1977 Nov;3(6):561–577. doi: 10.1007/BF01539066. [DOI] [PubMed] [Google Scholar]
  16. Pant S. S., Moser H. W., Krane S. M. Hyperuricemia in Down's syndrome. J Clin Endocrinol Metab. 1968 Apr;28(4):472–478. doi: 10.1210/jcem-28-4-472. [DOI] [PubMed] [Google Scholar]
  17. Patterson D., Graw S., Jones C. Demonstration, by somatic cell genetics, of coordinate regulation of genes for two enzymes of purine synthesis assigned to human chromosome 21. Proc Natl Acad Sci U S A. 1981 Jan;78(1):405–409. doi: 10.1073/pnas.78.1.405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Paukert J. L., Straus L. D., Rabinowitz J. C. Formyl-methyl-methylenetetrahydrofolate synthetase-(combined). An ovine protein with multiple catalytic activities. J Biol Chem. 1976 Aug 25;251(16):5104–5111. [PubMed] [Google Scholar]
  19. Reynolds P. H., Blevins D. G., Randall D. D. 5-Phosphoribosylpyrophosphate amidotransferase from soybean root nodules: kinetic and regulatory properties. Arch Biochem Biophys. 1984 Mar;229(2):623–631. doi: 10.1016/0003-9861(84)90195-4. [DOI] [PubMed] [Google Scholar]
  20. Rowe P. B., McCairns E., Madsen G., Sauer D., Elliott H. De novo purine synthesis in avian liver. Co-purification of the enzymes and properties of the pathway. J Biol Chem. 1978 Nov 10;253(21):7711–7721. [PubMed] [Google Scholar]
  21. Schneider I. Cell lines derived from late embryonic stages of Drosophila melanogaster. J Embryol Exp Morphol. 1972 Apr;27(2):353–365. [PubMed] [Google Scholar]
  22. Smith G. K., Benkovic P. A., Benkovic S. J. L(-)-10-Formyltetrahydrofolate is the cofactor for glycinamide ribonucleotide transformylase from chicken liver. Biochemistry. 1981 Jul 7;20(14):4034–4036. doi: 10.1021/bi00517a013. [DOI] [PubMed] [Google Scholar]
  23. Thomas P. S. Hybridization of denatured RNA transferred or dotted nitrocellulose paper. Methods Enzymol. 1983;100:255–266. doi: 10.1016/0076-6879(83)00060-9. [DOI] [PubMed] [Google Scholar]
  24. Wigler M., Pellicer A., Silverstein S., Axel R. Biochemical transfer of single-copy eucaryotic genes using total cellular DNA as donor. Cell. 1978 Jul;14(3):725–731. doi: 10.1016/0092-8674(78)90254-4. [DOI] [PubMed] [Google Scholar]
  25. Woods R. A., Jackson I. E. The accumulation of glycinamide ribotide by ade3 and ade8 mutants of Saccharomyces cerevisiae. Biochem Biophys Res Commun. 1973 Aug 6;53(3):787–793. doi: 10.1016/0006-291x(73)90161-7. [DOI] [PubMed] [Google Scholar]
  26. Wray W., Boulikas T., Wray V. P., Hancock R. Silver staining of proteins in polyacrylamide gels. Anal Biochem. 1981 Nov 15;118(1):197–203. doi: 10.1016/0003-2697(81)90179-2. [DOI] [PubMed] [Google Scholar]
  27. Young M., Sammons R. D., Mueller W. T., Benkovic S. J. An antibody probe to determine the native species of glycinamide ribonucleotide transformylase in chicken liver. Biochemistry. 1984 Aug 14;23(17):3979–3986. doi: 10.1021/bi00312a027. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES