Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1986 Feb;83(3):782–786. doi: 10.1073/pnas.83.3.782

Ganglioside GM3: an acidic membrane component that increases during macrophage-like cell differentiation can induce monocytic differentiation of human myeloid and monocytoid leukemic cell lines HL-60 and U937.

H Nojiri, F Takaku, Y Terui, Y Miura, M Saito
PMCID: PMC322949  PMID: 3456169

Abstract

When human myeloid and monocytoid leukemic cell lines HL-60 and U937, respectively, were treated with an exogenous sialoglycosphingolipid, ganglioside GM3, in serum-free medium, cell growth was markedly inhibited, and their morphological maturation along a monocytic lineage was observed. In addition to a significant increase in phagocytic and nonspecific esterase activities, marked increase of monocyte-specific surface antigens detectable with monoclonal antibodies such as OKM1 and OKM5 was observed in GM3-fed cells. Other sialoglycosphingolipids with the carbohydrate structure belonging to ganglio-series oligosaccharide, ganglioside GM1 and a brain ganglioside mixture, had no effect on the cell differentiation, showing instead stimulatory actions on the growth of these cell lines. We recently demonstrated that the ganglio-series ganglioside GM3 characteristically increased during macrophage-like cell differentiation of these cell lines. The present results indicate that ganglioside molecular species that specifically increase during monocytic cell differentiation of human myeloid and monocytoid leukemic cell lines may play, in turn, an important role in the differentiation-induction of these cell lines along a monocytic cell lineage.

Full text

PDF
782

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Breitman T. R., Collins S. J., Keene B. R. Replacement of serum by insulin and transferrin supports growth and differentiation of the human promyelocytic cell line, HL-60. Exp Cell Res. 1980 Apr;126(2):494–498. doi: 10.1016/0014-4827(80)90296-7. [DOI] [PubMed] [Google Scholar]
  2. Breitman T. R., Selonick S. E., Collins S. J. Induction of differentiation of the human promyelocytic leukemia cell line (HL-60) by retinoic acid. Proc Natl Acad Sci U S A. 1980 May;77(5):2936–2940. doi: 10.1073/pnas.77.5.2936. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bremer E. G., Hakomori S., Bowen-Pope D. F., Raines E., Ross R. Ganglioside-mediated modulation of cell growth, growth factor binding, and receptor phosphorylation. J Biol Chem. 1984 Jun 10;259(11):6818–6825. [PubMed] [Google Scholar]
  4. Bremer E. G., Hakomori S. GM3 ganglioside induces hamster fibroblast growth inhibition in chemically-defined medium: ganglioside may regulate growth factor receptor function. Biochem Biophys Res Commun. 1982 Jun 15;106(3):711–718. doi: 10.1016/0006-291x(82)91769-7. [DOI] [PubMed] [Google Scholar]
  5. Callies R., Schwarzmann G., Radsak K., Siegert R., Wiegandt H. Characterization of the cellular binding of exogenous gangliosides. Eur J Biochem. 1977 Nov 1;80(2):425–432. doi: 10.1111/j.1432-1033.1977.tb11897.x. [DOI] [PubMed] [Google Scholar]
  6. Collins S. J., Gallo R. C., Gallagher R. E. Continuous growth and differentiation of human myeloid leukaemic cells in suspension culture. Nature. 1977 Nov 24;270(5635):347–349. doi: 10.1038/270347a0. [DOI] [PubMed] [Google Scholar]
  7. Collins S. J., Ruscetti F. W., Gallagher R. E., Gallo R. C. Terminal differentiation of human promyelocytic leukemia cells induced by dimethyl sulfoxide and other polar compounds. Proc Natl Acad Sci U S A. 1978 May;75(5):2458–2462. doi: 10.1073/pnas.75.5.2458. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fishman P. H., Moss J., Vaughan M. Uptake and metabolism of gangliosides in transformed mouse fibroblasts. Relationship of ganglioside structure to choleragen response. J Biol Chem. 1976 Aug 10;251(15):4490–4494. [PubMed] [Google Scholar]
  9. Fontana J. A., Colbert D. A., Deisseroth A. B. Identification of a population of bipotent stem cells in the HL60 human promyelocytic leukemia cell line. Proc Natl Acad Sci U S A. 1981 Jun;78(6):3863–3866. doi: 10.1073/pnas.78.6.3863. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hakomori S. Glycosphingolipids in cellular interaction, differentiation, and oncogenesis. Annu Rev Biochem. 1981;50:733–764. doi: 10.1146/annurev.bi.50.070181.003505. [DOI] [PubMed] [Google Scholar]
  11. Icard-Liepkalns C., Liepkalns V. A., Yates A. J., Stephens R. E. Cell cycle phases of the novel human neural cell line and the effect of exogenous gangliosides. Biochem Biophys Res Commun. 1982 Mar 15;105(1):225–230. doi: 10.1016/s0006-291x(82)80034-x. [DOI] [PubMed] [Google Scholar]
  12. Kanda S., Inoue K., Nojima S., Utsumi H., Wiegandt H. Incorporation of spin-labeled ganglioside analogues into cell and liposomal membranes. J Biochem. 1982 May;91(5):1707–1718. doi: 10.1093/oxfordjournals.jbchem.a133862. [DOI] [PubMed] [Google Scholar]
  13. Keenan T. W., Schmid E., Franke W. W., Wiegandt H. Exogenous glycosphingolipids suppress growth rate of transformed and untransformed 3T3 mouse cells. Exp Cell Res. 1975 May;92(2):259–270. doi: 10.1016/0014-4827(75)90379-1. [DOI] [PubMed] [Google Scholar]
  14. Kitagawa S., Ohta M., Nojiri H., Kakinuma K., Saito M., Takaku F., Miura Y. Functional maturation of membrane potential changes and superoxide-producing capacity during differentiation of human granulocytes. J Clin Invest. 1984 Apr;73(4):1062–1071. doi: 10.1172/JCI111291. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Koeffler H. P., Golde D. W. Acute myelogenous leukemia: a human cell line responsive to colony-stimulating activity. Science. 1978 Jun 9;200(4346):1153–1154. doi: 10.1126/science.306682. [DOI] [PubMed] [Google Scholar]
  16. Laine R. A., Hakomori S. Incorporation of exogenous glycosphingolipids in plasma membranes of cultured hamster cells and concurrent change of growth behavior. Biochem Biophys Res Commun. 1973 Oct 1;54(3):1039–1045. doi: 10.1016/0006-291x(73)90798-5. [DOI] [PubMed] [Google Scholar]
  17. Li C. Y., Lam K. W., Yam L. T. Esterases in human leukocytes. J Histochem Cytochem. 1973 Jan;21(1):1–12. doi: 10.1177/21.1.1. [DOI] [PubMed] [Google Scholar]
  18. Lozzio C. B., Lozzio B. B. Human chronic myelogenous leukemia cell-line with positive Philadelphia chromosome. Blood. 1975 Mar;45(3):321–334. [PubMed] [Google Scholar]
  19. Macher B. A., Lee W. M., Westrick M. A. Glycosphingolipids of normal and leukemic human leukocytes. Mol Cell Biochem. 1982 Sep 3;47(2):81–95. doi: 10.1007/BF00234409. [DOI] [PubMed] [Google Scholar]
  20. Mittler R. S., Talle M. A., Carpenter K., Rao P. E., Goldstein G. Generation and characterization of monoclonal antibodies reactive with human B lymphocytes. J Immunol. 1983 Oct;131(4):1754–1761. [PubMed] [Google Scholar]
  21. Momoi T., Ando S., Magai Y. High resolution preparative column chromatographic system for gangliosides using DEAE-Sephadex and a new porus silica, Iatrobeads. Biochim Biophys Acta. 1976 Sep 27;441(3):488–497. [PubMed] [Google Scholar]
  22. Nojiri H., Takaku F., Tetsuka T., Motoyoshi K., Miura Y., Saito M. Characteristic expression of glycosphingolipid profiles in the bipotential cell differentiation of human promyelocytic leukemia cell line HL-60. Blood. 1984 Aug;64(2):534–541. [PubMed] [Google Scholar]
  23. Rovera G., Santoli D., Damsky C. Human promyelocytic leukemia cells in culture differentiate into macrophage-like cells when treated with a phorbol diester. Proc Natl Acad Sci U S A. 1979 Jun;76(6):2779–2783. doi: 10.1073/pnas.76.6.2779. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. SUZUKI K. A SIMPLE AND ACCURATE MICROMETHOD FOR QUANTITATIVE DETERMINATION OF GANGLIOSIDE PATTERNS. Life Sci. 1964 Nov;3:1227–1233. doi: 10.1016/0024-3205(64)90040-2. [DOI] [PubMed] [Google Scholar]
  25. Saito M., Nojiri H., Takaku F., Minowada J. Distinctive characteristics of ganglioside-profiles in human leukemia-lymphoma cell lines. Adv Exp Med Biol. 1982;152:369–391. [PubMed] [Google Scholar]
  26. Schwarzmann G., Hoffmann-Bleihauer P., Schubert J., Sandhoff K., Marsh D. Incorporation of ganglioside analogues into fibroblast cell membranes. A spin-label study. Biochemistry. 1983 Oct 11;22(21):5041–5048. doi: 10.1021/bi00290a025. [DOI] [PubMed] [Google Scholar]
  27. Sundström C., Nilsson K. Establishment and characterization of a human histiocytic lymphoma cell line (U-937). Int J Cancer. 1976 May 15;17(5):565–577. doi: 10.1002/ijc.2910170504. [DOI] [PubMed] [Google Scholar]
  28. Takeda K., Minowada J., Bloch A. Kinetics of appearance of differentiation-associated characteristics in ML-1, a line of human myeloblastic leukemia cells, after treatment with 12-O-tetradecanoylphorbol-13-acetate, dimethyl sulfoxide or 1-beta-D-arabinofuranosylcytosine. Cancer Res. 1982 Dec;42(12):5152–5158. [PubMed] [Google Scholar]
  29. Talle M. A., Rao P. E., Westberg E., Allegar N., Makowski M., Mittler R. S., Goldstein G. Patterns of antigenic expression on human monocytes as defined by monoclonal antibodies. Cell Immunol. 1983 May;78(1):83–99. doi: 10.1016/0008-8749(83)90262-9. [DOI] [PubMed] [Google Scholar]
  30. Tsuji S., Arita M., Nagai Y. GQ1b, a bioactive ganglioside that exhibits novel nerve growth factor (NGF)-like activities in the two neuroblastoma cell lines. J Biochem. 1983 Jul;94(1):303–306. doi: 10.1093/oxfordjournals.jbchem.a134344. [DOI] [PubMed] [Google Scholar]
  31. Wright S. D., Rao P. E., Van Voorhis W. C., Craigmyle L. S., Iida K., Talle M. A., Westberg E. F., Goldstein G., Silverstein S. C. Identification of the C3bi receptor of human monocytes and macrophages by using monoclonal antibodies. Proc Natl Acad Sci U S A. 1983 Sep;80(18):5699–5703. doi: 10.1073/pnas.80.18.5699. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES