Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1986 Feb;83(3):797–801. doi: 10.1073/pnas.83.3.797

Cloning and comparison of repeated DNA sequences from the human filarial parasite Brugia malayi and the animal parasite Brugia pahangi.

L A McReynolds, S M DeSimone, S A Williams
PMCID: PMC322952  PMID: 3003750

Abstract

A 320-base-pair repeated sequence was observed when DNA samples from the filarial parasites Brugia malayi and Brugia pahangi were digested with the restriction endonuclease Hha I. A 640-base-pair dimer of the repeated sequence from B. malayi was inserted into the plasmid pBR322. When dot hybridization was used, the copy number of the repeat in B. malayi was found to be about 30,000. The 320-base-pair Hha I repeated sequences are arranged in direct tandem arrays and comprise about 12% of the genome. B. pahangi has a related repeated sequence that cross-hybridizes with the cloned B. malayi Hha I repeat. Dot hybridization with the cloned repeat shows that the sequence is present in B. malayi and in B. pahangi but not in four other species of filarial parasites. The cloned repeated DNA sequence is an extremely sensitive probe for detection of Brugia in blood samples. Hybridization with the cloned repeat permits the detection of DNA isolated from a single parasite in an aliquot of blood from animals infected with B. malayi. There are differences in the restriction sites present in the repeated sequences that can be used to differentiate between the two Brugia species. The B. malayi repeated DNA sequence is cleaved by Alu I and Rsa I but the B. pahangi sequence is not. A comparison of repeated sequences between the two species by DNA sequence analysis indicates that some regions of individual repeats are over 95% homologous, while other short regions are only 60-65% homologous. These differences in DNA sequence will allow the construction of species-specific hybridization probes.

Full text

PDF
797

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Biggin M. D., Gibson T. J., Hong G. F. Buffer gradient gels and 35S label as an aid to rapid DNA sequence determination. Proc Natl Acad Sci U S A. 1983 Jul;80(13):3963–3965. doi: 10.1073/pnas.80.13.3963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Canlas M. M., Piessens W. F. Stage-specific and common antigens of Brugia malayi identified with monoclonal antibodies. J Immunol. 1984 Jun;132(6):3138–3141. [PubMed] [Google Scholar]
  3. Denham D. A., McGreevy P. B. Brugian filariasis: epidemiological and experimental studies. Adv Parasitol. 1977;15:243–309. doi: 10.1016/s0065-308x(08)60530-8. [DOI] [PubMed] [Google Scholar]
  4. Denhardt D. T. A membrane-filter technique for the detection of complementary DNA. Biochem Biophys Res Commun. 1966 Jun 13;23(5):641–646. doi: 10.1016/0006-291x(66)90447-5. [DOI] [PubMed] [Google Scholar]
  5. Emmons S. W., Klass M. R., Hirsh D. Analysis of the constancy of DNA sequences during development and evolution of the nematode Caenorhabditis elegans. Proc Natl Acad Sci U S A. 1979 Mar;76(3):1333–1337. doi: 10.1073/pnas.76.3.1333. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Flockhart H. A., Denham D. A. Differentiation of species and life cycle stages of Brugia spp. by isoenzyme analysis. J Parasitol. 1984 Jun;70(3):378–384. [PubMed] [Google Scholar]
  7. Gonzalez A., Prediger E., Huecas M. E., Nogueira N., Lizardi P. M. Minichromosomal repetitive DNA in Trypanosoma cruzi: its use in a high-sensitivity parasite detection assay. Proc Natl Acad Sci U S A. 1984 Jun;81(11):3356–3360. doi: 10.1073/pnas.81.11.3356. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Grunstein M., Hogness D. S. Colony hybridization: a method for the isolation of cloned DNAs that contain a specific gene. Proc Natl Acad Sci U S A. 1975 Oct;72(10):3961–3965. doi: 10.1073/pnas.72.10.3961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kafatos F. C., Jones C. W., Efstratiadis A. Determination of nucleic acid sequence homologies and relative concentrations by a dot hybridization procedure. Nucleic Acids Res. 1979 Nov 24;7(6):1541–1552. doi: 10.1093/nar/7.6.1541. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kannangara D. W., Smyth J. D. In vitro cultivation of Diplostomum spathaceum and Diplostomum phoxini metacercariae. Int J Parasitol. 1974 Dec;4(6):667–673. doi: 10.1016/0020-7519(74)90032-0. [DOI] [PubMed] [Google Scholar]
  11. McCutchan T. F., Simpson A. J., Mullins J. A., Sher A., Nash T. E., Lewis F., Richards C. Differentiation of schistosomes by species, strain, and sex by using cloned DNA markers. Proc Natl Acad Sci U S A. 1984 Feb;81(3):889–893. doi: 10.1073/pnas.81.3.889. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Messing J. New M13 vectors for cloning. Methods Enzymol. 1983;101:20–78. doi: 10.1016/0076-6879(83)01005-8. [DOI] [PubMed] [Google Scholar]
  13. Nelson G. S. Current concepts in parasitology. Filariasis. N Engl J Med. 1979 May 17;300(20):1136–1139. doi: 10.1056/NEJM197905173002004. [DOI] [PubMed] [Google Scholar]
  14. Oothuman P., Moss D. M., Maddison S. E. Comparative isoenzyme analysis of various stages of Brugia malayi and Brugia pahangi. J Parasitol. 1983 Oct;69(5):994–996. [PubMed] [Google Scholar]
  15. Rigby P. W., Dieckmann M., Rhodes C., Berg P. Labeling deoxyribonucleic acid to high specific activity in vitro by nick translation with DNA polymerase I. J Mol Biol. 1977 Jun 15;113(1):237–251. doi: 10.1016/0022-2836(77)90052-3. [DOI] [PubMed] [Google Scholar]
  16. Sivanandam S., Fredericks H. J. The "Innenkorper" in differentiation between the microfilanriae of Brugia pahangi and B. malayi (sub-periodic form). Med J Malaya. 1966 Jun;20(4):337–338. [PubMed] [Google Scholar]
  17. Southern E. M. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol. 1975 Nov 5;98(3):503–517. doi: 10.1016/s0022-2836(75)80083-0. [DOI] [PubMed] [Google Scholar]
  18. Sulston J. E., Brenner S. The DNA of Caenorhabditis elegans. Genetics. 1974 May;77(1):95–104. doi: 10.1093/genetics/77.1.95. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Ullrich A., Shine J., Chirgwin J., Pictet R., Tischer E., Rutter W. J., Goodman H. M. Rat insulin genes: construction of plasmids containing the coding sequences. Science. 1977 Jun 17;196(4296):1313–1319. doi: 10.1126/science.325648. [DOI] [PubMed] [Google Scholar]
  20. Wahl G. M., Stern M., Stark G. R. Efficient transfer of large DNA fragments from agarose gels to diazobenzyloxymethyl-paper and rapid hybridization by using dextran sulfate. Proc Natl Acad Sci U S A. 1979 Aug;76(8):3683–3687. doi: 10.1073/pnas.76.8.3683. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Wirth D. F., Pratt D. M. Rapid identification of Leishmania species by specific hybridization of kinetoplast DNA in cutaneous lesions. Proc Natl Acad Sci U S A. 1982 Nov;79(22):6999–7003. doi: 10.1073/pnas.79.22.6999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Yang R., Lis J., Wu R. Elution of DNA from agarose gels after electrophoresis. Methods Enzymol. 1979;68:176–182. doi: 10.1016/0076-6879(79)68012-6. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES