Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1986 Feb;83(4):862–866. doi: 10.1073/pnas.83.4.862

Curved DNA: design, synthesis, and circularization.

L Ulanovsky, M Bodner, E N Trifonov, M Choder
PMCID: PMC322970  PMID: 3456570

Abstract

Curved DNA molecules and unusually small circles have been obtained by ligation of synthetic 21-base precursors: (sequence in text). The ligation resulted in the formation of double-stranded oligo-(precursor)s possessing a strong 10.5-base-pair (bp) periodicity of the runs of adenines. Two-dimensional polyacrylamide gel electrophoresis of the ligation products showed two distinct families of spots: (i) noncircular oligo(precursor)s of 21 to 231 bp (1- to 11-mers) and (ii) four circles from 105 to 168 bp (eluted and analyzed by denaturing gel electrophoresis). The noncircular oligomers exhibited anomalously slow migration, as if they were as much as three times longer than they actually are. The amount of circular products peaked sharply at approximately equal to 126 bp, near which size the circles have been estimated to be nonconstrained both torsionally and in terms of bending. The nonconstrained circularization provides a technique for the direct measurement of the inherent curvature of DNA in solution. From the size of the circles, an estimate of 8.7 degrees is obtained for the absolute value of the AA X TT wedge angle (roll and tilt combined).

Full text

PDF
862

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bodner M., Fridkin M., Gozes I. Coding sequences for vasoactive intestinal peptide and PHM-27 peptide are located on two adjacent exons in the human genome. Proc Natl Acad Sci U S A. 1985 Jun;82(11):3548–3551. doi: 10.1073/pnas.82.11.3548. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bossi L., Smith D. M. Conformational change in the DNA associated with an unusual promoter mutation in a tRNA operon of Salmonella. Cell. 1984 Dec;39(3 Pt 2):643–652. doi: 10.1016/0092-8674(84)90471-9. [DOI] [PubMed] [Google Scholar]
  3. Chen H. H., Rau D. C., Charney E. The flexibility of alternating dA-dT sequences. J Biomol Struct Dyn. 1985 Feb;2(4):709–719. doi: 10.1080/07391102.1985.10506318. [DOI] [PubMed] [Google Scholar]
  4. Frank-Kamenetskii M. D., Lukashin A. V., Anshelevich V. V., Vologodskii A. V. Torsional and bending rigidity of the double helix from data on small DNA rings. J Biomol Struct Dyn. 1985 Feb;2(5):1005–1012. doi: 10.1080/07391102.1985.10507616. [DOI] [PubMed] [Google Scholar]
  5. Hagerman P. J. Evidence for the existence of stable curvature of DNA in solution. Proc Natl Acad Sci U S A. 1984 Aug;81(15):4632–4636. doi: 10.1073/pnas.81.15.4632. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hagerman P. J. Investigation of the flexibility of DNA using transient electric birefringence. Biopolymers. 1981 Jul;20(7):1503–1535. doi: 10.1002/bip.1981.360200710. [DOI] [PubMed] [Google Scholar]
  7. Hogan M., LeGrange J., Austin B. Dependence of DNA helix flexibility on base composition. Nature. 1983 Aug 25;304(5928):752–754. doi: 10.1038/304752a0. [DOI] [PubMed] [Google Scholar]
  8. Kabsch W., Sander C., Trifonov E. N. The ten helical twist angles of B-DNA. Nucleic Acids Res. 1982 Feb 11;10(3):1097–1104. doi: 10.1093/nar/10.3.1097. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Levene S. D., Crothers D. M. A computer graphics study of sequence-directed bending in DNA. J Biomol Struct Dyn. 1983 Oct;1(2):429–435. doi: 10.1080/07391102.1983.10507452. [DOI] [PubMed] [Google Scholar]
  10. Marini J. C., Levene S. D., Crothers D. M., Englund P. T. Bent helical structure in kinetoplast DNA. Proc Natl Acad Sci U S A. 1982 Dec;79(24):7664–7668. doi: 10.1073/pnas.79.24.7664. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Mengeritsky G., Trifonov E. N. Nucleotide sequence-directed mapping of the nucleosomes. Nucleic Acids Res. 1983 Jun 11;11(11):3833–3851. doi: 10.1093/nar/11.11.3833. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Peck L. J., Wang J. C. Sequence dependence of the helical repeat of DNA in solution. Nature. 1981 Jul 23;292(5821):375–378. doi: 10.1038/292375a0. [DOI] [PubMed] [Google Scholar]
  13. Prunell A., Goulet I., Jacob Y., Goutorbe F. The smaller helical repeat of poly(dA) . poly(dT) relative to DNA may reflect the wedge property of the dA . dT base pair. Eur J Biochem. 1984 Jan 16;138(2):253–257. doi: 10.1111/j.1432-1033.1984.tb07909.x. [DOI] [PubMed] [Google Scholar]
  14. Rhodes D., Klug A. Sequence-dependent helical periodicity of DNA. Nature. 1981 Jul 23;292(5821):378–380. doi: 10.1038/292378a0. [DOI] [PubMed] [Google Scholar]
  15. Ross W., Landy A. Anomalous electrophoretic mobility of restriction fragments containing the att region. J Mol Biol. 1982 Apr 15;156(3):523–529. doi: 10.1016/0022-2836(82)90264-9. [DOI] [PubMed] [Google Scholar]
  16. Ruskin B., Krainer A. R., Maniatis T., Green M. R. Excision of an intact intron as a novel lariat structure during pre-mRNA splicing in vitro. Cell. 1984 Aug;38(1):317–331. doi: 10.1016/0092-8674(84)90553-1. [DOI] [PubMed] [Google Scholar]
  17. Selsing E., Wells R. D., Alden C. J., Arnott S. Bent DNA: visualization of a base-paired and stacked A-B conformational junction. J Biol Chem. 1979 Jun 25;254(12):5417–5422. [PubMed] [Google Scholar]
  18. Shore D., Langowski J., Baldwin R. L. DNA flexibility studied by covalent closure of short fragments into circles. Proc Natl Acad Sci U S A. 1981 Aug;78(8):4833–4837. doi: 10.1073/pnas.78.8.4833. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Stellwagen N. C. Anomalous electrophoresis of deoxyribonucleic acid restriction fragments on polyacrylamide gels. Biochemistry. 1983 Dec 20;22(26):6186–6193. doi: 10.1021/bi00295a023. [DOI] [PubMed] [Google Scholar]
  20. Strauss F., Gaillard C., Prunell A. Helical periodicity of DNA, Poly(dA) . poly(dT) and poly(dA-dT). poly(dA-dT) in solution. Eur J Biochem. 1981 Aug;118(2):215–222. doi: 10.1111/j.1432-1033.1981.tb06389.x. [DOI] [PubMed] [Google Scholar]
  21. Trifonov E. N. Curved DNA. CRC Crit Rev Biochem. 1985;19(2):89–106. doi: 10.3109/10409238509082540. [DOI] [PubMed] [Google Scholar]
  22. Trifonov E. N. Sequence-dependent deformational anisotropy of chromatin DNA. Nucleic Acids Res. 1980 Sep 11;8(17):4041–4053. doi: 10.1093/nar/8.17.4041. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Trifonov E. N. Sequence-dependent variations of B-DNA structure and protein-DNA recognition. Cold Spring Harb Symp Quant Biol. 1983;47(Pt 1):271–278. doi: 10.1101/sqb.1983.047.01.032. [DOI] [PubMed] [Google Scholar]
  24. Trifonov E. N., Sussman J. L. The pitch of chromatin DNA is reflected in its nucleotide sequence. Proc Natl Acad Sci U S A. 1980 Jul;77(7):3816–3820. doi: 10.1073/pnas.77.7.3816. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Wang J. C. Helical repeat of DNA in solution. Proc Natl Acad Sci U S A. 1979 Jan;76(1):200–203. doi: 10.1073/pnas.76.1.200. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Wittig S., Wittig B. Function of a tRNA gene promoter depends on nucleosome position. Nature. 1982 May 6;297(5861):31–38. doi: 10.1038/297031a0. [DOI] [PubMed] [Google Scholar]
  27. Wu H. M., Crothers D. M. The locus of sequence-directed and protein-induced DNA bending. Nature. 1984 Apr 5;308(5959):509–513. doi: 10.1038/308509a0. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES