Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1986 Feb;83(4):962–966. doi: 10.1073/pnas.83.4.962

Lysozyme-induced fusion of liposomes with erythrocyte ghosts at acidic pH.

T Arvinte, K Hildenbrand, P Wahl, C Nicolau
PMCID: PMC322990  PMID: 3456575

Abstract

Lysozyme that was covalently bound to the outer surface of sonicated vesicles induced fusion of the vesicles with human white erythrocyte ghosts. The kinetics of membrane mixing were evaluated by the resonance-energy-transfer method using L-alpha-dipalmitoyl phosphatidylethanolamine labeled at the free amino group with the energy donor 7-nitro-2,1,3-benzoxadiazol-4-yl or with the energy acceptor tetramethylrhodamine. The equilibrium state after fusion was characterized by using fluorescence photobleaching and recovery techniques. Rates and equilibrium percentages of fusion were maximal at the pH optimum of the enzyme, and rates were strongly reduced by the addition of N,N',N''-triacetylchitotriose, a competitive inhibitor of lysozyme. An apparent activation energy of 28 +/- kcal/mol was obtained for the lipid-mixing process. At 37 degrees C, the fusion half-time was 0.5 min. After 30 min at 37 degrees C, 40% of the labeled lipids initially present in the fusion mixture had a lateral diffusion constant, D, of 1.1 +/- 0.5 X 10(-9) cm2 X sec-1 in the ghost membrane. The strong induction of fusion at the lysozyme pH optimum was not observed in the absence of lysozyme or when free lysozyme was added to the solution. Bound lysozyme did not induce fusion of electrically neutral liposomes with each other. These observations indicate that it is the liposome-bound lysozyme that induces fusion between liposomes and erythrocyte ghosts.

Full text

PDF
962

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arvinte T., Hildenbrand K. N-NBD-L-alpha-dilauroylphosphatidylethanolamine. A new fluorescent probe to study spontaneous lipid transfer. Biochim Biophys Acta. 1984 Aug 8;775(1):86–94. doi: 10.1016/0005-2736(84)90238-4. [DOI] [PubMed] [Google Scholar]
  2. BARTLETT G. R. Phosphorus assay in column chromatography. J Biol Chem. 1959 Mar;234(3):466–468. [PubMed] [Google Scholar]
  3. Blumenthal R., Henkart M., Steer C. J. Clathrin-induced pH-dependent fusion of phosphatidylcholine vesicles. J Biol Chem. 1983 Mar 10;258(5):3409–3415. [PubMed] [Google Scholar]
  4. Bodemann H., Passow H. Factors controlling the resealing of the membrane of human erythrocyte ghosts after hypotonic hemolysis. J Membr Biol. 1972;8(1):1–26. doi: 10.1007/BF01868092. [DOI] [PubMed] [Google Scholar]
  5. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  6. Connor J., Yatvin M. B., Huang L. pH-sensitive liposomes: acid-induced liposome fusion. Proc Natl Acad Sci U S A. 1984 Mar;81(6):1715–1718. doi: 10.1073/pnas.81.6.1715. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dufour J. P., Nunnally R., Buhle L., Jr, Tsong T. Y. Comparative study of an adenosine triphosphatase trigger-fused lipid vesicle and other vesicle forms of dimyristoylphosphatidylcholine. Biochemistry. 1981 Sep 15;20(19):5576–5586. doi: 10.1021/bi00522a035. [DOI] [PubMed] [Google Scholar]
  8. Eytan G. D., Almary T. Melittin-induced fusion of acidic liposomes. FEBS Lett. 1983 May 30;156(1):29–32. doi: 10.1016/0014-5793(83)80241-5. [DOI] [PubMed] [Google Scholar]
  9. Golan D. E., Alecio M. R., Veatch W. R., Rando R. R. Lateral mobility of phospholipid and cholesterol in the human erythrocyte membrane: effects of protein-lipid interactions. Biochemistry. 1984 Jan 17;23(2):332–339. doi: 10.1021/bi00297a024. [DOI] [PubMed] [Google Scholar]
  10. Kapitza H. G., Sackmann E. Local measurement of lateral motion in erythrocyte membranes by photobleaching technique. Biochim Biophys Acta. 1980;595(1):56–64. doi: 10.1016/0005-2736(80)90247-3. [DOI] [PubMed] [Google Scholar]
  11. Kawasaki K., Sato S. B., Ohnishi S. Membrane fusion activity of reconstituted vesicles of influenza virus hemagglutinin glycoproteins. Biochim Biophys Acta. 1983 Sep 7;733(2):286–290. doi: 10.1016/0005-2736(83)90534-5. [DOI] [PubMed] [Google Scholar]
  12. Koppel D. E., Axelrod D., Schlessinger J., Elson E. L., Webb W. W. Dynamics of fluorescence marker concentration as a probe of mobility. Biophys J. 1976 Nov;16(11):1315–1329. doi: 10.1016/S0006-3495(76)85776-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Lau A. L., Chan S. I. Nuclear magnetic resonance studies of the interaction of alamethicin with lecithin bilayers. Biochemistry. 1974 Nov 19;13(24):4942–4948. doi: 10.1021/bi00721a010. [DOI] [PubMed] [Google Scholar]
  14. Lyles D. S., Landsberger F. R. Kinetics of Sendai virus envelope fusion with erythrocyte membranes and virus-induced hemolysis. Biochemistry. 1979 Nov 13;18(23):5088–5095. doi: 10.1021/bi00590a011. [DOI] [PubMed] [Google Scholar]
  15. Monti J. A., Christian S. T., Shaw W. A. Synthesis and properties of a highly fluorescent derivative of phosphatidylethanolamine. J Lipid Res. 1978 Feb;19(2):222–228. [PubMed] [Google Scholar]
  16. Nichols J. W., Pagano R. E. Kinetics of soluble lipid monomer diffusion between vesicles. Biochemistry. 1981 May 12;20(10):2783–2789. doi: 10.1021/bi00513a012. [DOI] [PubMed] [Google Scholar]
  17. Pagano R. E., Martin O. C., Schroit A. J., Struck D. K. Formation of asymmetric phospholipid membranes via spontaneous transfer of fluorescent lipid analogues between vesicle populations. Biochemistry. 1981 Aug 18;20(17):4920–4927. doi: 10.1021/bi00520a018. [DOI] [PubMed] [Google Scholar]
  18. Peters R. Fluorescence microphotolysis. Diffusion measurements in single cells. Naturwissenschaften. 1983 Jun;70(6):294–302. doi: 10.1007/BF00404836. [DOI] [PubMed] [Google Scholar]
  19. Schneider H., Lemasters J. J., Höchli M., Hackenbrock C. R. Fusion of liposomes with mitochondrial inner membranes. Proc Natl Acad Sci U S A. 1980 Jan;77(1):442–446. doi: 10.1073/pnas.77.1.442. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Steer C. J., Klausner R. D., Blumenthal R. Interaction of liver clathrin coat protein with lipid model membranes. J Biol Chem. 1982 Jul 25;257(14):8533–8540. [PubMed] [Google Scholar]
  21. Struck D. K., Hoekstra D., Pagano R. E. Use of resonance energy transfer to monitor membrane fusion. Biochemistry. 1981 Jul 7;20(14):4093–4099. doi: 10.1021/bi00517a023. [DOI] [PubMed] [Google Scholar]
  22. Thompson N. L., Axelrod D. Reduced lateral mobility of a fluorescent lipid probe in cholesterol-depleted erythrocyte membrane. Biochim Biophys Acta. 1980 Mar 27;597(1):155–165. doi: 10.1016/0005-2736(80)90159-5. [DOI] [PubMed] [Google Scholar]
  23. Torchilin V. P., Goldmacher V. S., Smirnov V. N. Comparative studies on covalent and noncovalent immobilization of protein molecules on the surface of liposomes. Biochem Biophys Res Commun. 1978 Dec 14;85(3):983–990. doi: 10.1016/0006-291x(78)90640-x. [DOI] [PubMed] [Google Scholar]
  24. Tsao Y. S., Huang L. Sendai virus induced leakage of liposomes containing gangliosides. Biochemistry. 1985 Feb 26;24(5):1092–1098. doi: 10.1021/bi00326a004. [DOI] [PubMed] [Google Scholar]
  25. Umeda M., Nojima S., Inoue K. HVJ-mediated fusion between erythrocyte membranes and liposomes containing glycophorin. J Biochem. 1983 Dec;94(6):1955–1966. doi: 10.1093/oxfordjournals.jbchem.a134549. [DOI] [PubMed] [Google Scholar]
  26. Vanderwerf P., Ullman E. F. Monitoring of phospholipid vesicle fusion by fluorescence energy transfer between membrane-bound dye labels. Biochim Biophys Acta. 1980 Feb 28;596(2):302–314. doi: 10.1016/0005-2736(80)90363-6. [DOI] [PubMed] [Google Scholar]
  27. Wey C. L., Cone R. A., Edidin M. A. Lateral diffusion of rhodopsin in photoreceptor cells measured by fluorescence photobleaching and recovery. Biophys J. 1981 Feb;33(2):225–232. doi: 10.1016/S0006-3495(81)84883-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. White J., Helenius A. pH-dependent fusion between the Semliki Forest virus membrane and liposomes. Proc Natl Acad Sci U S A. 1980 Jun;77(6):3273–3277. doi: 10.1073/pnas.77.6.3273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Winzler R. J. Carbohydrates in cell surfaces. Int Rev Cytol. 1970;29:77–125. doi: 10.1016/s0074-7696(08)60033-9. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES