Abstract
An MR element that maps to a specific locus in chromosome 3 of Drosophila melanogaster has the unusual feature of producing complete P (a mobile element) sequence mutations at several X chromosome loci. This MR also increases the frequency of mitotic recombination. Evidence is given for the transposition of MR. The complete P insertion mutations are autonomously unstable and are capable of causing otherwise stable incomplete (defective) P insertion mutations to revert. These results complement the analysis of P element functions with a synthetic complete P derivative. The genetic basis for the mutational-mitotic recombinational components of "hybrid dysgenesis" is conveniently explicable in terms of MR elements present in the genomes of flies present in the wild.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Eeken J. C. The stability of mutator (MR)-induced X-chromosomal recessive visible mutations in Drosophila melanogaster. Mutat Res. 1982 Oct;96(2-3):213–224. doi: 10.1016/0027-5107(82)90088-4. [DOI] [PubMed] [Google Scholar]
- Green M. M. Genetic instability in Drosophila melanogaster: De novo induction of putative insertion mutations. Proc Natl Acad Sci U S A. 1977 Aug;74(8):3490–3493. doi: 10.1073/pnas.74.8.3490. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Green M. M., Slatko B. Genetic instability in Drosophila melanogaster dosage and mutator activity of an MR chromosome. Mutat Res. 1979 Oct;62(3):529–531. doi: 10.1016/0027-5107(79)90048-4. [DOI] [PubMed] [Google Scholar]
- Hiraizumi Y. Spontaneous recombination in Drosophila melanogaster males. Proc Natl Acad Sci U S A. 1971 Feb;68(2):268–270. doi: 10.1073/pnas.68.2.268. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Karess R. E., Rubin G. M. Analysis of P transposable element functions in Drosophila. Cell. 1984 Aug;38(1):135–146. doi: 10.1016/0092-8674(84)90534-8. [DOI] [PubMed] [Google Scholar]
- Matthews K. A., Hiraizumi Y. An Analysis of Male-Recombination Elements in a Natural Population of DROSOPHILA MELANOGASTER in South Texas. Genetics. 1978 Jan;88(1):81–91. doi: 10.1093/genetics/88.1.81. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McCLINTOCK B. Chromosome organization and genic expression. Cold Spring Harb Symp Quant Biol. 1951;16:13–47. doi: 10.1101/sqb.1951.016.01.004. [DOI] [PubMed] [Google Scholar]
- O'Hare K., Rubin G. M. Structures of P transposable elements and their sites of insertion and excision in the Drosophila melanogaster genome. Cell. 1983 Aug;34(1):25–35. doi: 10.1016/0092-8674(83)90133-2. [DOI] [PubMed] [Google Scholar]
- Rubin G. M., Spradling A. C. Genetic transformation of Drosophila with transposable element vectors. Science. 1982 Oct 22;218(4570):348–353. doi: 10.1126/science.6289436. [DOI] [PubMed] [Google Scholar]
- Spradling A. C., Rubin G. M. Transposition of cloned P elements into Drosophila germ line chromosomes. Science. 1982 Oct 22;218(4570):341–347. doi: 10.1126/science.6289435. [DOI] [PubMed] [Google Scholar]
- Yannopoulos G. Ability of the male recombination factor 31.1 MRF to be transposed to another chromosome in Drosophila melanogaster. Mol Gen Genet. 1979 Oct 3;176(2):247–253. doi: 10.1007/BF00273219. [DOI] [PubMed] [Google Scholar]
