Abstract
Prior studies report that plasma membranes of the spontaneously hypertensive rat (Okamoto-Aoki strain) bind less calcium than do the corresponding preparations from Wistar Kyoto controls. The possibility that the differences result from a decrease in the content of integral membrane calcium-binding protein (IMCAL) was explored by the application of immunoassays with polyclonal antisera and a mouse monoclonal antibody. IMCAL binds calcium with relatively high affinity, and its content in many rat tissues is regulated by vitamin D and the level of dietary calcium. Immunoassays of tissue IMCAL demonstrate significant reductions in content in the erythrocyte ghost, intestinal mucosa, kidney, heart, testis, and liver of the spontaneously hypertensive rat as compared to the control strains. The decreases are observed both at 4-5 weeks of age, before the onset of severe hypertension and at 8-9 weeks in the presence of severe hypertension. Moreover, the magnitude of the decrease in erythrocyte IMCAL can account for much of the decrease in the calcium-binding capacity of erythrocyte membranes reported by others. The results are especially significant because an abnormality in the membrane binding of calcium and in the regulation of cytosolic calcium ion concentration could underlie the pathogenesis of the hypertension.
Full text
PDF



Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abbott R. E., Schachter D. Impermeant maleimides. Oriented probes of erythrocyte membrane proteins. J Biol Chem. 1976 Nov 25;251(22):7176–7183. [PubMed] [Google Scholar]
- Aoki K., Yamashita K., Tomita N., Tazumi K., Hotta K. Proceedings: ATPase activity and Ca++ binding ability of subcellular membrane of arterial smooth muscle in spontaneously hypertensive rat. Jpn Heart J. 1974 Mar;15(2):180–181. doi: 10.1536/ihj.15.180. [DOI] [PubMed] [Google Scholar]
- Bhalla R. C., Webb R. C., Singh D., Ashley T., Brock T. Calcium fluxes, calcium binding, and adenosine cyclic 3',5'-monophosphate-dependent protein kinase activity in the aorta of spontaneously hypertensive and Kyoto Wistar normotensive rats. Mol Pharmacol. 1978 May;14(3):468–477. [PubMed] [Google Scholar]
- Devynck M. A., Pernollet M. G., Nunez A. M., Aragon I., Montenay-Garestier T., Helene C., Meyer P. Diffuse structural alterations in cell membranes of spontaneously hypertensive rats. Proc Natl Acad Sci U S A. 1982 Aug;79(16):5057–5060. doi: 10.1073/pnas.79.16.5057. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Devynck M. A., Pernollet M. G., Nunez A. M., Meyer P. Analysis of calcium handling in erythrocyte membranes of genetically hypertensive rats. Hypertension. 1981 Jul-Aug;3(4):397–403. doi: 10.1161/01.hyp.3.4.397. [DOI] [PubMed] [Google Scholar]
- Devynck M. A., Pernollet M. G., Nunez A. M., Meyer P. Calcium binding alteration in plasma membrane from various tissues of spontaneously hypertensive rat. Clin Exp Hypertens. 1981;3(4):797–807. doi: 10.3109/10641968109033703. [DOI] [PubMed] [Google Scholar]
- Erne P., Bolli P., Bürgisser E., Bühler F. R. Correlation of platelet calcium with blood pressure. Effect of antihypertensive therapy. N Engl J Med. 1984 Apr 26;310(17):1084–1088. doi: 10.1056/NEJM198404263101705. [DOI] [PubMed] [Google Scholar]
- Hawkes R., Niday E., Gordon J. A dot-immunobinding assay for monoclonal and other antibodies. Anal Biochem. 1982 Jan 1;119(1):142–147. doi: 10.1016/0003-2697(82)90677-7. [DOI] [PubMed] [Google Scholar]
- Kowarski S., Schachter D. Intestinal membrane calcium-binding protein. Vitamin D-dependent membrane component of the intestinal calcium transport mechanism. J Biol Chem. 1980 Nov 25;255(22):10834–10840. [PubMed] [Google Scholar]
- Kowarski S., Schachter D. Vitamin D-dependent, particulate calcium-binding activity and intestinal calcium transport. Am J Physiol. 1975 Nov;229(5):1198–1204. doi: 10.1152/ajplegacy.1975.229.5.1198. [DOI] [PubMed] [Google Scholar]
- Kwan C. Y., Belbeck L., Daniel E. E. Abnormal biochemistry of vascular smooth muscle plasma membrane isolated from hypertensive rats. Mol Pharmacol. 1980 Jan;17(1):137–140. [PubMed] [Google Scholar]
- Montenay-Garestier T., Aragon I., Devynck M. A., Meyer P., Helene C. Evidence for structural changes in erythrocyte membranes of spontaneously hypertension rats. A fluorescence polarization study. Biochem Biophys Res Commun. 1981 May 29;100(2):660–665. doi: 10.1016/s0006-291x(81)80226-4. [DOI] [PubMed] [Google Scholar]
- Moore L., Hurwitz L., Davenport G. R., Landon E. J. Energy-dependent calcium uptake activity of microsomes from the aorta of normal and hypertensive rats. Biochim Biophys Acta. 1975 Dec 16;413(3):432–443. doi: 10.1016/0005-2736(75)90126-1. [DOI] [PubMed] [Google Scholar]
- Nellans H. N., Goldsmith R. S. Transepithelial calcium transport by rat cecum: high-efficiency absorptive site. Am J Physiol. 1981 Jun;240(6):G424–G431. doi: 10.1152/ajpgi.1981.240.6.G424. [DOI] [PubMed] [Google Scholar]
- OKAMOTO K., AOKI K. Development of a strain of spontaneously hypertensive rats. Jpn Circ J. 1963 Mar;27:282–293. doi: 10.1253/jcj.27.282. [DOI] [PubMed] [Google Scholar]
- Orlov S. N., Gulak P. V., Litvinov I. S., Postnov YuV Evidence of altered structure of the erythrocyte membrane in spontaneously hypertensive rats. Clin Sci (Lond) 1982 Jul;63(1):43–45. doi: 10.1042/cs0630043. [DOI] [PubMed] [Google Scholar]
- Orlov S. N., Postnov Y. V. Ca2+ binding and membrane fluidity in essential and renal hypertension. Clin Sci (Lond) 1982 Sep;63(3):281–284. doi: 10.1042/cs0630281. [DOI] [PubMed] [Google Scholar]
- Orlov S. N., Postnov Y. V. Ca2+ binding and membrane fluidity in essential and renal hypertension. Clin Sci (Lond) 1982 Sep;63(3):281–284. doi: 10.1042/cs0630281. [DOI] [PubMed] [Google Scholar]
- Postnov Y. V., Orlov S. N., Pokudin N. I. Decrease of calcium binding by the red blood cell membrane in spontaneously hypertensive rats and in essential hypertension. Pflugers Arch. 1979 Mar 16;379(2):191–195. doi: 10.1007/BF00586947. [DOI] [PubMed] [Google Scholar]
- Schedl H. P., Miller D. L., Pape J. M., Horst R. L., Wilson H. D. Calcium and sodium transport and vitamin D metabolism in the spontaneously hypertensive rat. J Clin Invest. 1984 Apr;73(4):980–986. doi: 10.1172/JCI111323. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tjian R., Stinchcomb D., Losick R. Antibody directed against Bacillus subtilis rho factor purified by sodium dodecyl sulfate slab gel electrophoresis. Effect on transcription by RNA polymerase in crude extracts of vegetative and sporulating cells. J Biol Chem. 1975 Nov 25;250(22):8824–8828. [PubMed] [Google Scholar]
- Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wang C., Smith R. L. Lowry determination of protein in the presence of Triton X-100. Anal Biochem. 1975 Feb;63(2):414–417. doi: 10.1016/0003-2697(75)90363-2. [DOI] [PubMed] [Google Scholar]
- Wasserman R. H., Taylor A. N. Vitamin d3-induced calcium-binding protein in chick intestinal mucosa. Science. 1966 May 6;152(3723):791–793. doi: 10.1126/science.152.3723.791. [DOI] [PubMed] [Google Scholar]
- Webb R. C., Bhalla R. C. Altered calcium sequestration by subcellular fractions of vascular smooth muscle from spontaneously hypertensive rats. J Mol Cell Cardiol. 1976 Aug;8(8):651–661. doi: 10.1016/0022-2828(76)90050-x. [DOI] [PubMed] [Google Scholar]
- Wei J. W., Janis R. A., Daniel E. E. Calcium accumulation and enzymatic activities of subcellular fractions from aortas and ventricles of genetically hypertensive rats. Circ Res. 1976 Jul;39(1):133–140. doi: 10.1161/01.res.39.1.133. [DOI] [PubMed] [Google Scholar]
