Abstract
The neutral endopeptidase EC 3.4.24.11, also designated enkephalinase, has been visualized by in vitro autoradiography using the tritiated inhibitor [3H]-N-[(2RS)-3-hydroxyaminocarbonyl-2-benzyl-1-oxopropyl] glycine, ([3H]HACBO-Gly). Specific binding of [3H]HACBO-Gly (Kd = 0.4 +/- 0.05 nM) corresponding to 85% of the total binding to brain slices was inhibited by 1 microM thiorphan, a selective inhibitor of enkephalinase, but remained unchanged in the presence of captopril, a selective inhibitor of angiotensin-converting enzyme. Very high levels of [3H]HACBO-Gly binding were found in the choroid plexus and the substantia nigra. High levels were present in the caudate putamen, globus pallidus, nucleus accumbens, olfactory tubercle, and in the substantia gelatinosa of the spinal cord. Moderate densities were found in parts of the amygdala, the periaqueductal gray matter, the interpeduncular nucleus, and the molecular layer of the cerebellum. The distribution of enkephalinase was compared to that of mu and delta opioid receptors, selectively labeled with [3H]Tyr-D-Ala-Gly-MePhe-glycinol and [3H]Tyr-D-Thr-Gly-Phe-Leu-Thr, respectively. In the caudate putamen, [3H]HACBO-Gly binding overlapped the clustered mu sites but appeared more closely related to the diffusely distributed delta sites. High levels of enkephalinase and mu opioid binding sites were present at the level of the periaqueductal gray matter and in the substantia gelatinosa of the spinal cord, regions where only sparse delta opioid receptors could be detected. The association of enkephalinase with delta and mu opioid receptors in these areas is consistent with the observed role of the enzyme in regulating the effects of opioid peptides in striatal dopamine release and analgesia, respectively. Except for the choroid plexus and the cerebellum, the close similarity observed in numerous rat brain areas between the distribution of enkephalinase and that of mu and/or delta opioid binding sites could account for most of the pharmacological effects elicited by enkephalinase inhibitors.
Full text
PDF




Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Beaudet A., Descarries L. The monoamine innervation of rat cerebral cortex: synaptic and nonsynaptic axon terminals. Neuroscience. 1978;3(10):851–860. doi: 10.1016/0306-4522(78)90115-x. [DOI] [PubMed] [Google Scholar]
- Bouboutou R., Waksman G., Devin J., Fournié-Zaluski M. C., Roques B. P. Bidentate peptides: highly potent new inhibitors of enkephalin degrading enzymes. Life Sci. 1984 Aug 27;35(9):1023–1030. doi: 10.1016/0024-3205(84)90669-6. [DOI] [PubMed] [Google Scholar]
- Brownstein M. J., Mroz E. A., Kizer J. S., Palkovits M., Leeman S. E. Regional distribution of substance P in the brain of the rat. Brain Res. 1976 Nov 5;116(2):299–305. doi: 10.1016/0006-8993(76)90907-0. [DOI] [PubMed] [Google Scholar]
- Cascieri M. A., Bull H. G., Mumford R. A., Patchett A. A., Thornberry N. A., Liang T. Carboxyl-terminal tripeptidyl hydrolysis of substance P by purified rabbit lung angiotensin-converting enzyme and the potentiation of substance P activity in vivo by captopril and MK-422. Mol Pharmacol. 1984 Mar;25(2):287–293. [PubMed] [Google Scholar]
- Chaillet P., Coulaud A., Zajac J. M., Fournie-Zaluski M. C., Costentin J., Roques B. P. The mu rather than the delta subtype of opioid receptors appears to be involved in enkephalin-induced analgesia. Eur J Pharmacol. 1984 May 18;101(1-2):83–90. doi: 10.1016/0014-2999(84)90033-5. [DOI] [PubMed] [Google Scholar]
- Chan-Palay V., Ito M., Tongroach P., Sakurai M., Palay S. Inhibitory effects of motilin, somatostatin, [Leu]enkephalin, [Met]enkephalin, and taurine on neurons of the lateral vestibular nucleus: interactions with gamma-aminobutyric acid. Proc Natl Acad Sci U S A. 1982 May;79(10):3355–3359. doi: 10.1073/pnas.79.10.3355. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Changeux J. P. The acetylcholine receptor: an "allosteric" membrane protein. Harvey Lect. 1979 1980;75:85–254. [PubMed] [Google Scholar]
- Chesselet M. F., Cheramy A., Reisine T. D., Lubetzki C., Glowinski J., Fournie-Zaluski M. C., Roques B. Effects of various opiates including specific delta and mu agonists on dopamine release from nigrostriatal dopaminergic neurons in vitro in the rat and in vivo in the cat. Life Sci. 1982 Nov 15;31(20-21):2291–2294. doi: 10.1016/0024-3205(82)90140-0. [DOI] [PubMed] [Google Scholar]
- Corbett A. D., Gillan M. G., Kosterlitz H. W., McKnight A. T., Paterson S. J., Robson L. E. Selectivities of opioid peptide analogues as agonists and antagonists at the delta-receptor. Br J Pharmacol. 1984 Sep;83(1):271–279. doi: 10.1111/j.1476-5381.1984.tb10143.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Craves F. B., Law P. Y., Hunt C. A., Loh H. H. The metabolic disposition of radiolabeled enkephalins in vitro and in situ. J Pharmacol Exp Ther. 1978 Aug;206(2):492–506. [PubMed] [Google Scholar]
- Cuello A. C. Central distribution of opioid peptides. Br Med Bull. 1983 Jan;39(1):11–16. doi: 10.1093/oxfordjournals.bmb.a071784. [DOI] [PubMed] [Google Scholar]
- Cushman D. W., Cheung H. S., Sabo E. F., Ondetti M. A. Design of potent competitive inhibitors of angiotensin-converting enzyme. Carboxyalkanoyl and mercaptoalkanoyl amino acids. Biochemistry. 1977 Dec 13;16(25):5484–5491. doi: 10.1021/bi00644a014. [DOI] [PubMed] [Google Scholar]
- Delay-Goyet P., Zajac J. M., Rigaudy P., Foucaud B., Roques B. P. Comparative binding properties of linear and cyclic delta-selective enkephalin analogues: [3H]-[D-Thr2, Leu5] enkephalyl-Thr6 and [3H]-[D-Pen2, D-Pen5] enkephalin. FEBS Lett. 1985 Apr 22;183(2):439–443. doi: 10.1016/0014-5793(85)80827-9. [DOI] [PubMed] [Google Scholar]
- Descarries L., Beaudet A., Watkins K. C. Serotonin nerve terminals in adult rat neocortex. Brain Res. 1975 Dec 26;100(3):563–588. doi: 10.1016/0006-8993(75)90158-4. [DOI] [PubMed] [Google Scholar]
- Fournie-Zaluski M. C., Chaillet P., Bouboutou R., Coulaud A., Cherot P., Waksman G., Costentin J., Roques B. P. Analgesic effects of kelatorphan, a new highly potent inhibitor of multiple enkephalin degrading enzymes. Eur J Pharmacol. 1984 Jul 20;102(3-4):525–528. doi: 10.1016/0014-2999(84)90575-2. [DOI] [PubMed] [Google Scholar]
- Gerfen C. R. The neostriatal mosaic: compartmentalization of corticostriatal input and striatonigral output systems. Nature. 1984 Oct 4;311(5985):461–464. doi: 10.1038/311461a0. [DOI] [PubMed] [Google Scholar]
- Glimcher P. W., Giovino A. A., Margolin D. H., Hoebel B. G. Endogenous opiate reward induced by an enkephalinase inhibitor, thiorphan, injected into the ventral midbrain. Behav Neurosci. 1984 Apr;98(2):262–268. doi: 10.1037//0735-7044.98.2.262. [DOI] [PubMed] [Google Scholar]
- Goodman R. R., Snyder S. H., Kuhar M. J., Young W. S., 3rd Differentiation of delta and mu opiate receptor localizations by light microscopic autoradiography. Proc Natl Acad Sci U S A. 1980 Oct;77(10):6239–6243. doi: 10.1073/pnas.77.10.6239. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Guy J., Vaudry H., Pelletier G. Further studies on the identification of neurons containing immunoreactive alpha-melanocyte-stimulating hormone (alpha-MSH) in the rat brain. Brain Res. 1982 May 6;239(1):265–270. doi: 10.1016/0006-8993(82)90849-6. [DOI] [PubMed] [Google Scholar]
- Haffmans J., Blankwater Y. J., Ukponmwan O. E., Zijlstra F. J., Vincent J. E., Hespe W., Dzoljic M. R. Correlation between the distribution of 3H-labelled enkephalin in rat brain and the anatomical regions involved in enkephalin-induced seizures. Neuropharmacology. 1983 Aug;22(8):1021–1028. doi: 10.1016/0028-3908(83)90219-8. [DOI] [PubMed] [Google Scholar]
- Hambrook J. M., Morgan B. A., Rance M. J., Smith C. F. Mode of deactivation of the enkephalins by rat and human plasma and rat brain homogenates. Nature. 1976 Aug 26;262(5571):782–783. doi: 10.1038/262782a0. [DOI] [PubMed] [Google Scholar]
- Hamel E., Beaudet A. Electron microscopic autoradiographic localization of opioid receptors in rat neostriatum. Nature. 1984 Nov 8;312(5990):155–157. doi: 10.1038/312155a0. [DOI] [PubMed] [Google Scholar]
- Herz A., Bläsig J., Emrich H. M., Cording C., Pirée S., Kölling A., von Zerssen D. Is there some indication from behavioral effects of endorphins for their involvement in psychiatric disorders? Adv Biochem Psychopharmacol. 1978;18:333–339. [PubMed] [Google Scholar]
- Hong J. S., Schmid R. Intrahippocampal distribution of Met5-enkephalin. Brain Res. 1981 Feb 2;205(2):415–418. doi: 10.1016/0006-8993(81)90353-x. [DOI] [PubMed] [Google Scholar]
- Hughes J. Isolation of an endogenous compound from the brain with pharmacological properties similar to morphine. Brain Res. 1975 May 2;88(2):295–308. doi: 10.1016/0006-8993(75)90391-1. [DOI] [PubMed] [Google Scholar]
- Jan L. Y., Jan Y. N. Peptidergic transmission in sympathetic ganglia of the frog. J Physiol. 1982 Jun;327:219–246. doi: 10.1113/jphysiol.1982.sp014228. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kerr M. A., Kenny A. J. The purification and specificity of a neutral endopeptidase from rabbit kidney brush border. Biochem J. 1974 Mar;137(3):477–488. doi: 10.1042/bj1370477. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Leslie F. M., Chavkin C., Cox B. M. Opioid binding properties of brain and peripheral tissues: evidence for heterogeneity in opioid ligand binding sites. J Pharmacol Exp Ther. 1980 Aug;214(2):395–402. [PubMed] [Google Scholar]
- Lord J. A., Waterfield A. A., Hughes J., Kosterlitz H. W. Endogenous opioid peptides: multiple agonists and receptors. Nature. 1977 Jun 9;267(5611):495–499. doi: 10.1038/267495a0. [DOI] [PubMed] [Google Scholar]
- Lynch D. R., Strittmatter S. M., Snyder S. H. Enkephalin convertase localization by [3H]guanidinoethylmercaptosuccinic acid autoradiography: selective association with enkephalin-containing neurons. Proc Natl Acad Sci U S A. 1984 Oct;81(20):6543–6547. doi: 10.1073/pnas.81.20.6543. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Malfroy B., Swerts J. P., Guyon A., Roques B. P., Schwartz J. C. High-affinity enkephalin-degrading peptidase in brain is increased after morphine. Nature. 1978 Nov 30;276(5687):523–526. doi: 10.1038/276523a0. [DOI] [PubMed] [Google Scholar]
- Mantyh P. W., Hunt S. P., Maggio J. E. Substance P receptors: localization by light microscopic autoradiography in rat brain using [3H]SP as the radioligand. Brain Res. 1984 Jul 30;307(1-2):147–165. doi: 10.1016/0006-8993(84)90470-0. [DOI] [PubMed] [Google Scholar]
- Marks N., Grynabaum A., Neidle A. On the degradation of enkephalins and endorphins by rat and mouse brain extracts. Biochem Biophys Res Commun. 1977 Feb 21;74(4):1552–1559. doi: 10.1016/0006-291x(77)90619-2. [DOI] [PubMed] [Google Scholar]
- Martres M. P., Bouthenet M. L., Sales N., Sokoloff P., Schwartz J. C. Widespread distribution of brain dopamine receptors evidenced with [125I]iodosulpride, a highly selective ligand. Science. 1985 May 10;228(4700):752–755. doi: 10.1126/science.3838821. [DOI] [PubMed] [Google Scholar]
- North R. A. Opiates, opioid peptides and single neurones. Life Sci. 1979 Apr 23;24(17):1527–1545. doi: 10.1016/0024-3205(79)90014-6. [DOI] [PubMed] [Google Scholar]
- O'Brien C. P., Terenius L., Wahlström A., McLellan A. T., Krivoy W. Endorphin levels in opioid-dependent human subjects: a longitudinal study. Ann N Y Acad Sci. 1982;398:377–387. doi: 10.1111/j.1749-6632.1982.tb39509.x. [DOI] [PubMed] [Google Scholar]
- Pert C. B., Pasternak G., Snyder S. H. Opiate agonists and antagonists discriminated by receptor binding in brain. Science. 1973 Dec 28;182(4119):1359–1361. doi: 10.1126/science.182.4119.1359. [DOI] [PubMed] [Google Scholar]
- Quirion R., Zajac J. M., Morgat J. L., Roques B. P. Autoradiographic distribution of mu and delta opiate receptors in rat brain using highly selective ligands. Life Sci. 1983;33 (Suppl 1):227–230. doi: 10.1016/0024-3205(83)90484-8. [DOI] [PubMed] [Google Scholar]
- Roques B. P., Fournié-Zaluski M. C., Soroca E., Lecomte J. M., Malfroy B., Llorens C., Schwartz J. C. The enkephalinase inhibitor thiorphan shows antinociceptive activity in mice. Nature. 1980 Nov 20;288(5788):286–288. doi: 10.1038/288286a0. [DOI] [PubMed] [Google Scholar]
- Schwartz J. C., de la Baume S., Malfroy B., Patey G., Perdrisot R., Swerts J. P., Fournié-Zaluski M. C., Gacel G., Roques B. P. Properties variations and possible synaptic functions of "enkephalinase": a newly characterised dipeptidyl carboxypeptidase. Adv Biochem Psychopharmacol. 1980;22:219–235. [PubMed] [Google Scholar]
- Smith J. R., Simon E. J. Selective protection of stereospecific enkephalin and opiate binding against inactivation by N-ethylmaleimide: evidence for two classes of opiate receptors. Proc Natl Acad Sci U S A. 1980 Jan;77(1):281–284. doi: 10.1073/pnas.77.1.281. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Strittmatter S. M., Lo M. M., Javitch J. A., Snyder S. H. Autoradiographic visualization of angiotensin-converting enzyme in rat brain with [3H]captopril: localization to a striatonigral pathway. Proc Natl Acad Sci U S A. 1984 Mar;81(5):1599–1603. doi: 10.1073/pnas.81.5.1599. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thiele E. A., Strittmatter S. M., Snyder S. H. Substance K and substance P as possible endogenous substrates of angiotensin converting enzyme in the brain. Biochem Biophys Res Commun. 1985 Apr 16;128(1):317–324. doi: 10.1016/0006-291x(85)91681-x. [DOI] [PubMed] [Google Scholar]
- Turner A. J., Matsas R., Kenny A. J. Are there neuropeptide-specific peptidases? Biochem Pharmacol. 1985 May 1;34(9):1347–1356. doi: 10.1016/0006-2952(85)90669-0. [DOI] [PubMed] [Google Scholar]
- Ukponmwan O. E., Dzoljic M. R. Enkephalinase inhibition antagonizes the increased susceptibility to seizure induced by REM sleep deprivation. Psychopharmacology (Berl) 1984;83(3):229–232. doi: 10.1007/BF00464786. [DOI] [PubMed] [Google Scholar]
- Van Dijk A., Richards J. G., Trzeciak A., Gillessen D., Möhler H. Cholecystokinin receptors: biochemical demonstration and autoradiographical localization in rat brain and pancreas using [3H] cholecystokinin8 as radioligand. J Neurosci. 1984 Apr;4(4):1021–1033. doi: 10.1523/JNEUROSCI.04-04-01021.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vanderhaeghen J. J., Lotstra F., De Mey J., Gilles C. Immunohistochemical localization of cholecystokinin- and gastrin-like peptides in the brain and hypophysis of the rat. Proc Natl Acad Sci U S A. 1980 Feb;77(2):1190–1194. doi: 10.1073/pnas.77.2.1190. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Waksman G., Bouboutou R., Devin J., Besselievre R., Fournie-Zaluski M. C., Roques B. P. Binding of the bidentate inhibitor [3H]HACBO-Gly to the rat brain neutral endopeptidase "enkephalinase". Biochem Biophys Res Commun. 1985 Aug 30;131(1):262–268. doi: 10.1016/0006-291x(85)91797-8. [DOI] [PubMed] [Google Scholar]
- Waksman G., Hamel E., Bouboutou R., Besselièvre R., Fournié-Zaluski M. C., Roques B. P. Distribution régionale de l'enképhalinase dans le cerveau du rat par autoradiographie. C R Acad Sci III. 1984;299(14):613–615. [PubMed] [Google Scholar]
- Yaksh T. L., Harty G. J. Effects of thiorphan on the antinociceptive actions of intrathecal [D-Ala2,Met5] enkephalin. Eur J Pharmacol. 1982 Apr 23;79(3-4):293–300. doi: 10.1016/0014-2999(82)90635-5. [DOI] [PubMed] [Google Scholar]
- Zieglgänsberger W., French E. D., Siggins G. R., Bloom F. E. Opioid peptides may excite hippocampal pyramidal neurons by inhibiting adjacent inhibitory interneurons. Science. 1979 Jul 27;205(4404):415–417. doi: 10.1126/science.451610. [DOI] [PubMed] [Google Scholar]