Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1986 Mar;83(6):1613–1616. doi: 10.1073/pnas.83.6.1613

Primary-structure requirements for inhibition by the heat-stable inhibitor of the cAMP-dependent protein kinase.

J D Scott, M B Glaccum, E H Fischer, E G Krebs
PMCID: PMC323133  PMID: 3456605

Abstract

The amino acid sequence of the heat-stable inhibitor of the cAMP-dependent protein kinase (PKI) was determined recently [Scott, J. D., Fischer, E. H., Takio, K., Demaille, J. G. & Krebs, E. G. (1985) Proc. Natl. Acad. Sci. USA 82, 5732-5736]. An earlier report [Scott, J. D., Fischer, E.H., Demaille, J. G. & Krebs, E. G. (1985) Proc. Natl. Acad. Sci. USA 82, 4379-4383] showed that at least part of the inhibitory domain of PKI is located in a 20-residue segment extending from residue 11 to residue 30: Ile-Ala-Ser-Gly-Arg-Thr-Gly-Arg-Arg-Asn-Ala-Ile-His-Asp-Ile-Leu-Val-Ser- Ser-Ala . In the present study, we further mapped the inhibitory region of PKI by addition or deletion of residues at both ends of this peptide and by substitutions for specific amino acids. The results show that (i) deletion of residues 25-30 did not change inhibitory activity but addition of residues toward the amino terminus increased the inhibitory potency up to 150-fold (Ki 4.8 nM), to a level approaching that of PKI; (ii) replacement of alanine-21 by serine converted the inhibitor into a substrate having a relatively low affinity (Km 280 microM) for the enzyme; (iii) replacement of alanine-21 by phosphoserine or alpha-aminobutyric acid decreased inhibitory activity by a factor of 120 and 20, respectively; (iv) replacement of serine-13 had essentially no effect, whereas substitution of threonine-16 decreased inhibitory activity. The greatest decreases of inhibitory potency occurred with replacements of the arginines in positions 18 and 19.

Full text

PDF
1613

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ashby C. D., Walsh D. A. Characterization of the interaction of a protein inhibitor with adenosine 3',5'-monophosphate-dependent protein kinases. II. Mechanism of action with the holoenzyme. J Biol Chem. 1973 Feb 25;248(4):1255–1261. [PubMed] [Google Scholar]
  2. Bidlingmeyer B. A., Cohen S. A., Tarvin T. L. Rapid analysis of amino acids using pre-column derivatization. J Chromatogr. 1984 Dec 7;336(1):93–104. doi: 10.1016/s0378-4347(00)85133-6. [DOI] [PubMed] [Google Scholar]
  3. Bramson H. N., Kaiser E. T., Mildvan A. S. Mechanistic studies of cAMP-dependent protein kinase action. CRC Crit Rev Biochem. 1984;15(2):93–124. doi: 10.3109/10409238409102298. [DOI] [PubMed] [Google Scholar]
  4. Cheng H. C., Kemp B. E., Pearson R. B., Smith A. J., Misconi L., Van Patten S. M., Walsh D. A. A potent synthetic peptide inhibitor of the cAMP-dependent protein kinase. J Biol Chem. 1986 Jan 25;261(3):989–992. [PubMed] [Google Scholar]
  5. Cheng H. C., van Patten S. M., Smith A. J., Walsh D. A. An active twenty-amino-acid-residue peptide derived from the inhibitor protein of the cyclic AMP-dependent protein kinase. Biochem J. 1985 Nov 1;231(3):655–661. doi: 10.1042/bj2310655. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Demaille J. G., Ferraz C., Fischer E. H. The protein inhibitor of adenosine 3',5'-monophosphate-dependent protein kinases. The NH2-terminal portion of the peptide chain contains the inhibitory site. Biochim Biophys Acta. 1979 Aug 22;586(2):374–383. doi: 10.1016/0304-4165(79)90106-5. [DOI] [PubMed] [Google Scholar]
  7. Demaille J. G., Peters K. A., Fischer E. H. Isolation and properties of the rabbit skeletal muscle protein inhibitor of adenosine 3',5'-monophosphate dependent protein kinases. Biochemistry. 1977 Jul 12;16(14):3080–3086. doi: 10.1021/bi00633a006. [DOI] [PubMed] [Google Scholar]
  8. Feramisco J. R., Glass D. B., Krebs E. G. Optimal spatial requirements for the location of basic residues in peptide substrates for the cyclic AMP-dependent protein kinase. J Biol Chem. 1980 May 10;255(9):4240–4245. [PubMed] [Google Scholar]
  9. Feramisco J. R., Krebs E. G. Inhibition of cyclic AMP-dependent protein kinase by analogues of a synthetic peptide substrate. J Biol Chem. 1978 Dec 25;253(24):8968–8971. [PubMed] [Google Scholar]
  10. Feramisco J. R., Krebs E. G. Inhibition of cyclic AMP-dependent protein kinase by analogues of a synthetic peptide substrate. J Biol Chem. 1978 Dec 25;253(24):8968–8971. [PubMed] [Google Scholar]
  11. Flockhart D. A., Watterson D. M., Corbin J. D. Studies on functional domains of the regulatory subunit of bovine heart adenosine 3':5'-monophosphate-dependent protein kinase. J Biol Chem. 1980 May 25;255(10):4435–4440. [PubMed] [Google Scholar]
  12. Granot J., Mildvan A. S., Kaiser E. T. Studies of the mechanism of action and regulation of cAMP-dependent protein kinase. Arch Biochem Biophys. 1980 Nov;205(1):1–17. doi: 10.1016/0003-9861(80)90078-8. [DOI] [PubMed] [Google Scholar]
  13. Henderson P. J. A linear equation that describes the steady-state kinetics of enzymes and subcellular particles interacting with tightly bound inhibitors. Biochem J. 1972 Apr;127(2):321–333. doi: 10.1042/bj1270321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Humble E., Berglund L., Titanji V., Ljungström O., Edlund B., Zetterqvist O., Engström L. Non-dependence on native structure of pig liver pyruvate kinase when used as a substrate for cyclic 3',5'-AMP-stimulated protein kinase. Biochem Biophys Res Commun. 1975 Sep 16;66(2):614–621. doi: 10.1016/0006-291x(75)90554-9. [DOI] [PubMed] [Google Scholar]
  15. Kemp B. E., Benjamini E., Krebs E. G. Synthetic hexapeptide substrates and inhibitors of 3':5'-cyclic AMP-dependent protein kinase. Proc Natl Acad Sci U S A. 1976 Apr;73(4):1038–1042. doi: 10.1073/pnas.73.4.1038. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kemp B. E., Graves D. J., Benjamini E., Krebs E. G. Role of multiple basic residues in determining the substrate specificity of cyclic AMP-dependent protein kinase. J Biol Chem. 1977 Jul 25;252(14):4888–4894. [PubMed] [Google Scholar]
  17. Kemp B. E., Graves D. J., Benjamini E., Krebs E. G. Role of multiple basic residues in determining the substrate specificity of cyclic AMP-dependent protein kinase. J Biol Chem. 1977 Jul 25;252(14):4888–4894. [PubMed] [Google Scholar]
  18. Krebs E. G., Beavo J. A. Phosphorylation-dephosphorylation of enzymes. Annu Rev Biochem. 1979;48:923–959. doi: 10.1146/annurev.bi.48.070179.004423. [DOI] [PubMed] [Google Scholar]
  19. McPherson J. M., Whitehouse S., Walsh D. A. Possibility of shape conformers of the protein inhibitor of the cyclic adenosine monophosphate dependent protein kinase. Biochemistry. 1979 Oct 30;18(22):4835–4845. doi: 10.1021/bi00589a011. [DOI] [PubMed] [Google Scholar]
  20. Mildvan A. S., Rosevear P. R., Granot J., O'Brian C. A., Bramson H. N., Kaiser E. T. Use of NMR and EPR to study cAMP-dependent protein kinase. Methods Enzymol. 1983;99:93–119. doi: 10.1016/0076-6879(83)99045-6. [DOI] [PubMed] [Google Scholar]
  21. Potter R. L., Taylor S. S. Correlation of the cAMP binding domain with a site of autophosphorylation on the regulatory subunit of cAMP-dependent protein kinase II from porcine skeletal muscle. J Biol Chem. 1979 Sep 25;254(18):9000–9005. [PubMed] [Google Scholar]
  22. Reed J., Kinzel V., Kemp B. E., Cheng H. C., Walsh D. A. Circular dichroic evidence for an ordered sequence of ligand/binding site interactions in the catalytic reaction of the cAMP-dependent protein kinase. Biochemistry. 1985 Jun 4;24(12):2967–2973. doi: 10.1021/bi00333a024. [DOI] [PubMed] [Google Scholar]
  23. Reed J., Kinzel V. Ligand binding site interaction in adenosine cyclic 3',5'-monophosphate dependent protein kinase catalytic subunit: circular dichroic evidence for intramolecular transmission of conformational change. Biochemistry. 1984 Feb 28;23(5):968–973. doi: 10.1021/bi00300a026. [DOI] [PubMed] [Google Scholar]
  24. Reed J., Kinzel V. Near- and far-ultraviolet circular dichroism of the catalytic subunit of adenosine cyclic 5'-monophosphate dependent protein kinase. Biochemistry. 1984 Mar 27;23(7):1357–1362. doi: 10.1021/bi00302a004. [DOI] [PubMed] [Google Scholar]
  25. Rosevear P. R., Fry D. C., Mildvan A. S., Doughty M., O'Brian C., Kaiser E. T. NMR studies of the backbone protons and secondary structure of pentapeptide and heptapeptide substrates bound to bovine heart protein kinase. Biochemistry. 1984 Jul 3;23(14):3161–3173. doi: 10.1021/bi00309a009. [DOI] [PubMed] [Google Scholar]
  26. Sarin V. K., Kent S. B., Tam J. P., Merrifield R. B. Quantitative monitoring of solid-phase peptide synthesis by the ninhydrin reaction. Anal Biochem. 1981 Oct;117(1):147–157. doi: 10.1016/0003-2697(81)90704-1. [DOI] [PubMed] [Google Scholar]
  27. Scott J. D., Fischer E. H., Demaille J. G., Krebs E. G. Identification of an inhibitory region of the heat-stable protein inhibitor of the cAMP-dependent protein kinase. Proc Natl Acad Sci U S A. 1985 Jul;82(13):4379–4383. doi: 10.1073/pnas.82.13.4379. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Scott J. D., Fischer E. H., Takio K., Demaille J. G., Krebs E. G. Amino acid sequence of the heat-stable inhibitor of the cAMP-dependent protein kinase from rabbit skeletal muscle. Proc Natl Acad Sci U S A. 1985 Sep;82(17):5732–5736. doi: 10.1073/pnas.82.17.5732. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Takio K., Smith S. B., Krebs E. G., Walsh K. A., Titani K. Amino acid sequence of the regulatory subunit of bovine type II adenosine cyclic 3',5'-phosphate dependent protein kinase. Biochemistry. 1984 Aug 28;23(18):4200–4206. doi: 10.1021/bi00313a029. [DOI] [PubMed] [Google Scholar]
  30. Takio K., Walsh K. A., Neurath H., Smith S. B., Krebs E. G., Titani K. The amino acid sequence of a hinge region in the regulatory subunit of bovine cardiac muscle cyclic AMP-dependent protein kinase II. FEBS Lett. 1980 May 19;114(1):83–88. doi: 10.1016/0014-5793(80)80865-9. [DOI] [PubMed] [Google Scholar]
  31. Titani K., Sasagawa T., Ericsson L. H., Kumar S., Smith S. B., Krebs E. G., Walsh K. A. Amino acid sequence of the regulatory subunit of bovine type I adenosine cyclic 3',5'-phosphate dependent protein kinase. Biochemistry. 1984 Aug 28;23(18):4193–4199. doi: 10.1021/bi00313a028. [DOI] [PubMed] [Google Scholar]
  32. Walsh D. A., Ashby C. D., Gonzalez C., Calkins D., Fischer E. H. Krebs EG: Purification and characterization of a protein inhibitor of adenosine 3',5'-monophosphate-dependent protein kinases. J Biol Chem. 1971 Apr 10;246(7):1977–1985. [PubMed] [Google Scholar]
  33. Walsh K. A., Ericsson L. H., Parmelee D. C., Titani K. Advances in protein sequencing. Annu Rev Biochem. 1981;50:261–284. doi: 10.1146/annurev.bi.50.070181.001401. [DOI] [PubMed] [Google Scholar]
  34. Whitehouse S., Feramisco J. R., Casnellie J. E., Krebs E. G., Walsh D. A. Studies on the kinetic mechanism of the catalytic subunit of the cAMP-dependent protein kinase. J Biol Chem. 1983 Mar 25;258(6):3693–3701. [PubMed] [Google Scholar]
  35. Whitehouse S., Walsh D. A. Mg X ATP2-dependent interaction of the inhibitor protein of the cAMP-dependent protein kinase with the catalytic subunit. J Biol Chem. 1983 Mar 25;258(6):3682–3692. [PubMed] [Google Scholar]
  36. Zetterqvist O., Ragnarsson U. The structural requirements of substrates of cyclic AMP-dependent protein kinase. FEBS Lett. 1982 Mar 22;139(2):287–290. doi: 10.1016/0014-5793(82)80872-7. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES