Skip to main content
The AAPS Journal logoLink to The AAPS Journal
. 2006 Apr 14;8(2):E239–E253. doi: 10.1007/BF02854894

Drug discovery from natural sources

Young-Won Chin 1, Marcy J Balunas 1,2, Hee Byung Chai 1, A Douglas Kinghorn 1,
PMCID: PMC3231566  PMID: 16796374

Abstract

Organic compounds from terrestrial and marine organisms have extensive past and present use in the treatment of many diseases and serve as compounds of interest both in their natural form and as templates for synthetic modification. Over 20 new drugs launched on the market between 2000 and 2005, originating from terrestrial plants, terrestrial microorganisms, marine organisms, and terrestrial vertebrates and invertebrates, are described. These approved substances, representative of very wide chemical diversity, together with several other natural products or their analogs undergoing clinical trials, continue to demonstrate the importance of compounds from natural sources in modern drug discovery efforts.

Keywords: natural products, drug discovery, terrestrial plants, terrestrial microorganisms, marine organisms, terrestrial vertebrates, terrestrial invertebrates, chemical diversity

Full Text

The Full Text of this article is available as a PDF (342.3 KB).

References

  • 1.Newman DJ, Cragg GM, Snader KM. The influence of natural products upon drug discovery. Nat Prod Rep. 2000;17:215–234. doi: 10.1039/a902202c. [DOI] [PubMed] [Google Scholar]
  • 2.Newman DJ, Cragg GM, Snader KM. Natural products as sources of new drugs over the period 1981–2002. J Nat Prod. 2003;66:1022–1037. doi: 10.1021/np030096l. [DOI] [PubMed] [Google Scholar]
  • 3.Koehn FE, Carter GT. The evolving role of natural products in drug discovery. Nat Rev Drug Discov. 2005;4:206–220. doi: 10.1038/nrd1657. [DOI] [PubMed] [Google Scholar]
  • 4.Paterson I, Anderson EA. The renaissance of natural products as drug candidates. Science. 2005;310:451–453. doi: 10.1126/science.1116364. [DOI] [PubMed] [Google Scholar]
  • 5.Balunas MJ, Kinghorn AD. Drug discovery from medicinal plants. Life Sci. 2005;78:431–441. doi: 10.1016/j.lfs.2005.09.012. [DOI] [PubMed] [Google Scholar]
  • 6.Jones WP, Chin Y-W, Kinghorn AD. The role of pharmacognosy in modern medicine and pharmacy. Curr Drug Targets. 2006;7:247–264. doi: 10.2174/138945006776054915. [DOI] [PubMed] [Google Scholar]
  • 7.Drahl C, Cravatt BF, Sorensen EJ. Protein-reactive natural products. Angew Chem Int Ed Engl. 2005;44:5788–5809. doi: 10.1002/anie.200500900. [DOI] [PubMed] [Google Scholar]
  • 8.Grifo F, Newman D, Fairfield A, Bhattacharya B, Grupenhoff J. The origins of prescription drugs. In: Grifo F, Rosenthal J, editors. Biodiversity and Human Health. Washington, DC: Island Press; 1997. pp. 131–163. [Google Scholar]
  • 9.Butler MS. The role of natural product chemistry in drug discovery. J Nat Prod. 2004;67:2141–2153. doi: 10.1021/np040106y. [DOI] [PubMed] [Google Scholar]
  • 10.Thayer A. Bristol-Myers to settle suits. Chem Eng News. 2003;81:6–6. [Google Scholar]
  • 11.Oberlies NH, Kroll DJ. Camptothecin and taxol: historic achievements in natural products research. J Nat Prod. 2004;67:129–135. doi: 10.1021/np030498t. [DOI] [PubMed] [Google Scholar]
  • 12.Butler MS. Natural products to drugs: natural products derived compounds in clinical trials. Nat Prod Rep. 2005;22:162–195. doi: 10.1039/b402985m. [DOI] [PubMed] [Google Scholar]
  • 13.Dewick PM. Medicinal Natural Products: A Biosynthetic Approach. 2nd ed. Chichester, UK: John Wiley & Sons; 2002. [Google Scholar]
  • 14.Fabricant DS, Farnsworth NR. The value of plants used in traditional medicine for drug discovery. Environ Health Perspect. 2001;109:69–75. doi: 10.2307/3434847. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Kinghorn AD. The discovery of drugs from higher plants. In: Gullo VP, editor. The Discovery of Natural Products with Therapeutic Potential. Boston, MA: Butterworth-Heinemann; 1994. pp. 81–108. [Google Scholar]
  • 16.Deleu D, Hanssens Y, Northway MG. Subcutaneous apomorphine: an evidence-based review of its use in Parkinson's disease. Drugs Aging. 2004;21:687–709. doi: 10.2165/00002512-200421110-00001. [DOI] [PubMed] [Google Scholar]
  • 17.Koumis T, Samuel S. Tiotropium bromide: a new long-acting bronchodilator for the treatment of chronic obstructive pulmonary disease. Clin Ther. 2005;27:377–392. doi: 10.1016/j.clinthera.2005.04.006. [DOI] [PubMed] [Google Scholar]
  • 18.Hall MG, Wilks MF, Provan WM, Eksborg S, Lumholtz B. Pharmacokinetics and pharmacodynamics of NTBC [2-(2-nitro-4-fluoromethyl-benzoyl)-1,3-cyclohexanedione] and mesotrion, inhibitors of 4-hydroxyphenyl pyruvate dioxygenase (HPPD) following a single dose to healthy male volunteers. Br J Clin Pharmacol. 2001;52:169–177. doi: 10.1046/j.0306-5251.2001.01421.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Mitchell G, Bartlett DW, Fraser TEM, et al. Mesotrione: a new selective herbicide for use in maize. Pest Manag Sci. 2001;57:120–128. doi: 10.1002/1526-4998(200102)57:2<120::AID-PS254>3.0.CO;2-E. [DOI] [PubMed] [Google Scholar]
  • 20.Howes M-JR, Perry NSL, Houghton PJ. Plants with traditional uses and activities, relevant to the management of Alzheimer's disease and other cognitive disorders. Phytother Res. 2003;17:1–18. doi: 10.1002/ptr.1280. [DOI] [PubMed] [Google Scholar]
  • 21.Heinrich M, Teoh HL. Galanthamine from snowdrop—the development of a modern drug against Alzheimer's disease from local Caucasian knowledge. J Ethnopharmacol. 2004;92:147–162. doi: 10.1016/j.jep.2004.02.012. [DOI] [PubMed] [Google Scholar]
  • 22.van Agtmael MA, Eggelte TA, van Boxtel CJ. Artemisinin drugs in the treatment of malaria: from medicinal herb to registered medication. Trends Pharmacol Sci. 1999;20:199–205. doi: 10.1016/S0165-6147(99)01302-4. [DOI] [PubMed] [Google Scholar]
  • 23.Cirla A, Mann J. Combrestatins: from natural products to drug discovery. Nat Prod Rep. 2003;20:558–564. doi: 10.1039/b306797c. [DOI] [PubMed] [Google Scholar]
  • 24.Pinney KG, Jelinek C, Edvardsen K, Chaplin DJ, Pettit GR. The discovery and development of the combrestatins. In: Cragg GM, Kingston DGI, Newman DJ, editors. Anticancer Agents from Natural Products. Boca Raton, FL: CRC Press; 2005. pp. 23–46. [Google Scholar]
  • 25.West CML, Price P. Combrestatin A4 phosphate. Anticancer Drugs. 2004;15:179–187. doi: 10.1097/00001813-200403000-00001. [DOI] [PubMed] [Google Scholar]
  • 26.Young SL, Chaplin DJ. Combrestatin A4 phosphate: background and current clinical status. Expert Opin Investig Drugs. 2004;13:1171–1182. doi: 10.1517/13543784.13.9.1171. [DOI] [PubMed] [Google Scholar]
  • 27.Powell RG, Weisleder D, Smith CR, Rohwedder WK. Structures of harringtonine, isoharringtomine, and homoharringtonine. Tetrahedron Lett. 1970;11:815–818. doi: 10.1016/S0040-4039(01)97839-6. [DOI] [PubMed] [Google Scholar]
  • 28.Kantarjian Hm, Talpaz M, Santini V, Murgo A, Cheson B, O'Brian SM. Homoharringtonine: history, current research, and future direction. Cancer. 2001;92:1591–1603. doi: 10.1002/1097-0142(20010915)92:6<1591::AID-CNCR1485>3.0.CO;2-U. [DOI] [PubMed] [Google Scholar]
  • 29.Kedei N, Lundberg DJ, Toth A, Welburn P, Garfield SH, Blumberg PM. Characterization of the interaction of ingenol 3-angelate with protein kinase. C. Cancer Res. 2004;64:3243–3255. doi: 10.1158/0008-5472.can-03-3403. [DOI] [PubMed] [Google Scholar]
  • 30.Ogbourne SM, Suhrbier A, Jones B, et al. Antitumor activity of ingenol 3-angelate: plasma membrane and mitochondrial disruption and necrotic cell death. Cancer Res. 2004;64:2833–2839. doi: 10.1158/0008-5472.CAN-03-2837. [DOI] [PubMed] [Google Scholar]
  • 31.Kamsteeg M, Rutherford T, Sapi E, et al. Phenoxodiol—an isoflavone analog—induces apoptosis in chemoresitant ovarian cancer cells. Oncogene. 2003;22:2611–2620. doi: 10.1038/sj.onc.1206422. [DOI] [PubMed] [Google Scholar]
  • 32.Constantinou AI, Mehta R, Husband A. Phenoxodiol, a novel isoflavone derivative, inhibits dimethylbenz[a]anthracene (DMBA)-induced mammary carcinogenesis in female Sprague-Dawley rats. Eur J Cancer. 2003;39:1012–1018. doi: 10.1016/S0959-8049(03)00124-2. [DOI] [PubMed] [Google Scholar]
  • 33.Shibata S, Tanaka O, Sado M, Tsushima S. The genuine sapogenin of ginseng. Tetrahedron Lett. 1963;4:795–800. doi: 10.1016/S0040-4039(01)90718-X. [DOI] [Google Scholar]
  • 34.Jia W, Yan H, Bu X, Liu G, Zhao Y. Aglycone protopanaxadiol, a ginseng saponin, inhibits P-glycoprotein and sensitizes chemotherapy drugs on multidrug resistant cancer cells. J Clin Oncol. 2004;22:9663–9663. [Google Scholar]
  • 35.Kiviharju TM, Lecane PS, Sellers RG, Peehl DM. Antiproliferative and proapoptotic of triptolide (PG490), and natural product entering clinical trials, on primary cultures of human prostatic epithelial cells. Clin Cancer Res. 2002;8:2666–2674. [PubMed] [Google Scholar]
  • 36.Fidler JM, Li K, Chung C, et al. PG490-88, a derivative of triptolide, causes tumor regression and sensitizes tumors to chemotherapy. Mol Cancer Ther. 2003;2:855–862. [PubMed] [Google Scholar]
  • 37.Sneader W. Drug Discovery: A History. Hoboken, NJ: John Wiley & Sons; 2005. [Google Scholar]
  • 38.Jarvis B, Figgitt DP, Scott LJ. Micafungin. Drugs. 2004;64:969–982. doi: 10.2165/00003495-200464090-00004. [DOI] [PubMed] [Google Scholar]
  • 39.Frattarelli DAC, Reed MD, Giacoia GP, Aranda JV. Antifungals in systemic neonatal candidiasis. Drugs. 2004;64:949–968. doi: 10.2165/00003495-200464090-00003. [DOI] [PubMed] [Google Scholar]
  • 40.Zhanel GG, Homenuik K, Nichol K, et al. The glycylcyclines: a comparative review with the tetracyclines. Drugs. 2004;64:63–88. doi: 10.2165/00003495-200464010-00005. [DOI] [PubMed] [Google Scholar]
  • 41.Chapman TM, Perry CM. Everolimus. Drugs. 2004;64:861–872. doi: 10.2165/00003495-200464080-00005. [DOI] [PubMed] [Google Scholar]
  • 42.Zhanel GG, Walters M, Noreddin A, et al. The ketolides: a critical review. Drugs. 2002;62:1771–1804. doi: 10.2165/00003495-200262120-00006. [DOI] [PubMed] [Google Scholar]
  • 43.Pastores GM, Barnett NL, Kolodny EH. An open-label, noncomparative study of miglustat in type I Gaucher disease: efficacy and tolerability over 24 months of treatment. Clin Ther. 2005;27:1215–1227. doi: 10.1016/j.clinthera.2005.08.004. [DOI] [PubMed] [Google Scholar]
  • 44.Weinreb NJ, Barranger JA, Charrow J, Grabowski GA, Mankin HJ, Mistry P. Guidance on the use of miglustat for treating patients with type 1 Gaucher disease. Am J Hematol. 2005;80:223–229. doi: 10.1002/ajh.20504. [DOI] [PubMed] [Google Scholar]
  • 45.Bardsley-Elliot A, Noble S, Foster RH. Mycophenolate mofetil: a review of its use in the management of solid organ transplantation. Bio Drugs. 1999;12:363–410. doi: 10.2165/00063030-199912050-00005. [DOI] [PubMed] [Google Scholar]
  • 46.Curran MP, Keating GM. Mycophenolate sodium delayed release: prevention of renal transplant rejection. Drugs. 2005;65:799–805. doi: 10.2165/00003495-200565060-00007. [DOI] [PubMed] [Google Scholar]
  • 47.Carswell CI, Plosker GL, Jarvis B. Rosuvastatin. Drugs. 2002;62:2075–2085. doi: 10.2165/00003495-200262140-00008. [DOI] [PubMed] [Google Scholar]
  • 48.Scott LJ, Curran MP, Figgitt DP. Rosuvastatin: a review of its use in the management of dyslipidemia. Am J Cardiovasc Drugs. 2004;4:117–138. doi: 10.2165/00129784-200404020-00005. [DOI] [PubMed] [Google Scholar]
  • 49.Mukhtar RYA, Reid J, Reckless JPD. Pitavastatin. Int J Clin Pract. 2005;59:239–252. doi: 10.1111/j.1742-1241.2005.00461.x. [DOI] [PubMed] [Google Scholar]
  • 50.Fenton C, Keating GM, Curran MP. Daptomycin. Drugs. 2004;64:445–455. doi: 10.2165/00003495-200464040-00009. [DOI] [PubMed] [Google Scholar]
  • 51.Ogawa M. Novel anticancer drugs in Japan. J Cancer Res Clin Oncol. 1999;125:134–140. doi: 10.1007/s004320050255. [DOI] [PubMed] [Google Scholar]
  • 52.Sugiura T, Ariyoshi Y, Negoro S, et al. Phase I/II study of amrubicin, a novel 9-aminoanthracycline, in patients with advanced non-small-cell lung cancer. Invest New Drugs. 2005;23:331–337. doi: 10.1007/s10637-005-1441-3. [DOI] [PubMed] [Google Scholar]
  • 53.Perry CM, Ibbotson T. Biapenem. Drugs. 2002;62:2221–2234. doi: 10.2165/00003495-200262150-00005. [DOI] [PubMed] [Google Scholar]
  • 54.Darkes MJM, Plosker GL. Cefditoren pivoxil. Drugs. 2002;62:319–336. doi: 10.2165/00003495-200262020-00006. [DOI] [PubMed] [Google Scholar]
  • 55.Keating G, Figgitt D. Caspofungin: a review of its use in oesophageal candidiasis, invasive candidiasis and invasive aspergillosis. Drugs. 2003;63:2235–2263. doi: 10.2165/00003495-200363200-00008. [DOI] [PubMed] [Google Scholar]
  • 56.Letscher-Bru V, Herbrecht R. Caspofungin: the first representative of a new antifungal class. J Antimicrob Chemother. 2003;51:513–521. doi: 10.1093/jac/dkg117. [DOI] [PubMed] [Google Scholar]
  • 57.McCormack PL, Perry CM. Caspofungin A: review of its use in the treatment of fungal infections. Drugs. 2005;65:2049–2068. doi: 10.2165/00003495-200565140-00009. [DOI] [PubMed] [Google Scholar]
  • 58.Sader HS, Gales AC. Emerging strategies in infectious diseases: new carbapenem and trinem antibacterial agents. Drugs. 2001;61:553–564. doi: 10.2165/00003495-200161050-00001. [DOI] [PubMed] [Google Scholar]
  • 59.Gupta AK, Chow M. Pimecrolimus: a review. J Eur Acad Dermatol Venereol. 2003;17:493–503. doi: 10.1046/j.1468-3083.2003.00692.x. [DOI] [PubMed] [Google Scholar]
  • 60.Lee MD, Dunne TS, Siegel MM, Chang CC, Morton GO, Borders DB. Calichemicins, a novel family of antitumor antibiotics. 1. Chemistry and partial structure of calichemicinγ1. J Am Chem Soc. 1987;109:3464–3466. doi: 10.1021/ja00245a050. [DOI] [Google Scholar]
  • 61.Giles F, Estey E, O'Brien S. Gemtuzumab ozogamicin in the treatment of acute myeloid leukemia. Cancer. 2003;98:2095–2104. doi: 10.1002/cncr.11791. [DOI] [PubMed] [Google Scholar]
  • 62.Portugal J. Chartreusin, elsamicin A and related anti-cancer antibiotics. Curr Med Chem Anticancer Agents. 2003;3:411–420. doi: 10.2174/1568011033482215. [DOI] [PubMed] [Google Scholar]
  • 63.Lam KS, Veitch JA, Forenza S, Combs CM, Colson KL. Biosynthesis of elsamicin A, a novel antitumor antibiotic. J Nat Prod. 1989;52:1015–1021. doi: 10.1021/np50065a016. [DOI] [PubMed] [Google Scholar]
  • 64.DiMarco A, Gaetani M, Orezzi P, Scotti T, Arcamone FF. Experimental studies on distamycin A—a new antibiotic with cytotoxic activity. Cancer Chemother Rep. 1962;18:15–19. [PubMed] [Google Scholar]
  • 65.Broggini M, Marchini S, Fontana E, Moneta D, Fowst C, Geroni C. Brostacillin: a new concept in mimor groove DNA binder development. Anticancer Drugs. 2004;15:1–6. doi: 10.1097/00001813-200401000-00001. [DOI] [PubMed] [Google Scholar]
  • 66.Geroni C, Marchini S, Cozzi P, et al. Brostalicin, a novel anticancer agent whose activity is enhanced upon binding to glutathione. Cancer Res. 2002;62:2332–2336. [PubMed] [Google Scholar]
  • 67.DeBoer C, Meulman PA, Wnuk RJ, Peterson DH. Geldanamycin, a new antibiotic. J Antibiot (Tokyo) 1970;23:442–447. doi: 10.7164/antibiotics.23.442. [DOI] [PubMed] [Google Scholar]
  • 68.Sasaki K, Rinehart KL, Slomp G, Grostic MF, Olson BC. Geldanamycin. I. Structure assignment. J Am Chem Soc. 1970;92:7591–7593. doi: 10.1021/ja00713a050. [DOI] [PubMed] [Google Scholar]
  • 69.Bisht KS, Bradbury M, Mattson D, et al. Geldanamycin and 17-allylamino-17-demethoxygeldanamycin potentiate thein vitro andin vivo radiation response of cervical tumor cells via the heat shock protein 90-mediated intracellular signaling and cytotoxicity. Cancer Res. 2003;63:8984–8995. [PubMed] [Google Scholar]
  • 70.Kaur G, Belotti D, Burger AM, et al. Antiangiogenic properties of 17-(dimethylaminoethylamino)-17-demethoxygeldanamycin: an orally bioavailable heat shock protein 90 modulator. Clin Cancer Res. 2004;10:4813–4821. doi: 10.1158/1078-0432.CCR-03-0795. [DOI] [PubMed] [Google Scholar]
  • 71.Supko JG, Eder JP, Ryan DP, et al. Phase I clinical trial and pharmacokinetic study of the spicamycin analog KRN500 administered as a 1-hour intravenous infusion for five consecutive days to patients with refractory solid tumors. Clin Cancer Res. 2003;9:5178–5186. [PubMed] [Google Scholar]
  • 72.Yoshinari T, Ohkubo M, Fukasawa K, et al. Mode of action of a new indolocarbazole anticancer agent, J-107088, targeting topoisomerase I. Cancer Res. 1999;59:4271–4275. [PubMed] [Google Scholar]
  • 73.Zaugg K, Rocha S, Resch H, et al. Differential p53-dependent mechanism of radiosensitizationin vitro andin vivo by the protein kinase C-specific inhibitor PKC412. Cancer Res. 2001;61:732–738. [PubMed] [Google Scholar]
  • 74.Long BH, Rose WC, Vyas DM, Matson JA, Forenza S. Discovery of antitumor indolocarbazoles: rebeccamycin, NSC 655649, and fluoroindolocarbazoles. Curr Med Chem Anticancer Agents. 2002;2:255–266. doi: 10.2174/1568011023354218. [DOI] [PubMed] [Google Scholar]
  • 75.Chen J, De Angelo DJ, Kutok JL, et al. PKC412 inhibits the zinc finger 198-fibroblast growth factor receptor 1 fusion tyrosine kinase and is active in treatment of stem cell myeloproliferative disorders. Proc Natl Acad Sci USA. 2004;101:14479–14484. doi: 10.1073/pnas.0404438101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 76.Kondapaka SB, Zarnowski M, Yver DR, Sausville EA, Cushman SW. 7-Hydroxystaurosporine (UCN-01) inhibition of Akt Thr308 but not Ser473 phosphorylation: a basis for decreased insulin-stimulated glucose transport. Clin Cancer Res. 2004;10:7192–7198. doi: 10.1158/1078-0432.CCR-04-0772. [DOI] [PubMed] [Google Scholar]
  • 77.Smith BD, Levis M, Beran M, et al. Single-agent CEP-701, a novel FLT3 inhibitor, shows biological and clinical activity in patients with relapsed or refractory acute myeloid leukemia. Blood. 2004;103:3669–3676. doi: 10.1182/blood-2003-11-3775. [DOI] [PubMed] [Google Scholar]
  • 78.Marshall JL, Kindler H, Deeken J, et al. Phase I trial of orally administered CEP-701, a novel neurotrophin receptor-linked tyrosine kinase inhibitor. Invest New Drugs. 2005;23:31–37. doi: 10.1023/B:DRUG.0000047103.64335.b0. [DOI] [PubMed] [Google Scholar]
  • 79.Tsuji N, Kobayashi M, Nagashima K, Wakisaka Y, Koizumi K. A new antifungal antibiotic, trichostatin. J Antibiot (Tokyo) 1976;29:1–6. doi: 10.7164/antibiotics.29.1. [DOI] [PubMed] [Google Scholar]
  • 80.Plumb JA, Finn PW, Williams RJ, et al. Pharmacodynamic response and inhibition of growth of human tumor xenografts by the novel histone deacetylase inhibitor PXD101. Mol Cancer Ther. 2003;2:721–728. [PubMed] [Google Scholar]
  • 81.Arts J, Schepper S, Emelen K. Histone deacetylase inhibitors: from chromatin remodeling to experimental cancer therapeutics. Curr Med Chem. 2003;10:2343–2350. doi: 10.2174/0929867033456657. [DOI] [PubMed] [Google Scholar]
  • 82.Atadja P, Gao L, Kwon P, et al. Selective growth inhibition of tumor cells by a novel histone deacetylase inhibitor, NVP-LAQ824. Cancer Res. 2004;64:689–695. doi: 10.1158/0008-5472.CAN-03-2043. [DOI] [PubMed] [Google Scholar]
  • 83.Monneret C. Histone deacetylase inhibitors. Eur J Med Chem. 2005;40:1–13. doi: 10.1016/j.ejmech.2004.10.001. [DOI] [PubMed] [Google Scholar]
  • 84.Sandor V, Bakke S, Robey RW, et al. Phase I trial of the histone deacetylase inhibitor, depsipetide (FR901228, NSC 630176), in patients with refractory neoplasms. Clin Cancer Res. 2002;8:718–728. [PubMed] [Google Scholar]
  • 85.Shiraga T, Tozuka Z, Ishimura R, Kawamura A, Kagawama A. Identification of cytochrome P450 enzymes involved in the metabolism of FK228, a potent histone deacetylase inhibitor, in human liver microsomes. Biol Pharm Bull. 2005;28:124–129. doi: 10.1248/bpb.28.124. [DOI] [PubMed] [Google Scholar]
  • 86.Kosmidis PA, Manegold C. Advanced NSCLC: new cytostatic agents. Lung Cancer. 2003;41:S123–S132. doi: 10.1016/S0169-5002(03)00156-9. [DOI] [PubMed] [Google Scholar]
  • 87.Starks CM, Zhou Y, Liu F, Licari PJ. Isolation and characterization of new epothilone analogues from recombinantMyxococcus xanthus fermentation. J Nat Prod. 2003;66:1313–1317. doi: 10.1021/np030218+. [DOI] [PubMed] [Google Scholar]
  • 88.Goodin S, Kane MP, Rubin EH. Epothilones: mechanism of action and biologic activity. J Clin Oncol. 2004;22:2015–2025. doi: 10.1200/JCO.2004.12.001. [DOI] [PubMed] [Google Scholar]
  • 89.Rizvi N, Villalona-Calere M, Lynch T, et al. Phase II study of KOS-862 (epothilone D) as second-line therapy in non-small cell lung cancer. Lung Cancer. 2005;49:S266–S267. doi: 10.1016/S0169-5002(05)81058-X. [DOI] [Google Scholar]
  • 90.Chun E, Han CK, Yoon JH, Sim TB, Kim Y-K, Lee K-Y. Novel inhibitors targeted to methionine aminopeptidase 2 (MetAP2) strongly inhibit the growth of cancers in xenografted nude model. Int J Cancer. 2005;114:124–130. doi: 10.1002/ijc.20687. [DOI] [PubMed] [Google Scholar]
  • 91.Bernier SG, Lazarus DD, Clark E, et al. A methionine aminopeptidase-2 inhibitor, PPI-2458, for the treatment of rheumatoid arthritis. Proc Natl Acad Sci USA. 2004;101:10768–10773. doi: 10.1073/pnas.0404105101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 92.McMorris TC, Anchel M. Fungal metabolites. The structures of the novel sesquiterpenoids illudin-S and-M. J Am Chem Soc. 1965;87:1594–1600. doi: 10.1021/ja01085a031. [DOI] [PubMed] [Google Scholar]
  • 93.McMorris TC, Kelner MJ, Wang W, Yu J, Estes LA, Taetle R. (Hydroxymethyl)acylfulvene: an illudin derivative with superior antitumor properties. J Nat Prod. 1996;59:896–899. doi: 10.1021/np960450y. [DOI] [PubMed] [Google Scholar]
  • 94.Wang J, Wiltshire T, Wang Y, et al. ATM-dependent CHK2 activation induced by anticancer agent, irfulven. J Biol Chem. 2004;279:39584–39592. doi: 10.1074/jbc.M400015200. [DOI] [PubMed] [Google Scholar]
  • 95.Newman DJ, Cragg GM. Advanced preclinical and clinical trials of natural products and related compounds from marine sources. Curr Med Chem. 2004;11:1693–1713. doi: 10.2174/0929867043364982. [DOI] [PubMed] [Google Scholar]
  • 96.Newman DJ, Cragg GM. Marine natural products and related compounds in clinical and advanced preclinical trials. J Nat Prod. 2004;67:1216–1238. doi: 10.1021/np040031y. [DOI] [PubMed] [Google Scholar]
  • 97.Capon RJ. Marine bioprospecting-trawling for treasure and pleasure. Eur J Org Chem. 2001;2001:633–645. doi: 10.1002/1099-0690(200102)2001:4<633::AID-EJOC633>3.0.CO;2-Q. [DOI] [Google Scholar]
  • 98.Haefner B. Drugs from the deep: marine natural products as drug candidates. Drug Discov Today. 2003;8:536–544. doi: 10.1016/S1359-6446(03)02713-2. [DOI] [PubMed] [Google Scholar]
  • 99.Jensen PR, Fenical W. Marine microorganisms and drug discovery: current status and future potential. In: Fusetani N, editor. Drugs from the Sea. New York: Karger; 2000. pp. 6–29. [Google Scholar]
  • 100.Schroeder CI, Smythe ML, Lewis RJ. Development of small molecules that mimic the binding of ω-conotoxins at the N-type voltage-gated calcium channel. Mol Divers. 2004;8:127–134. doi: 10.1023/B:MODI.0000025656.79632.86. [DOI] [PubMed] [Google Scholar]
  • 101.Taraboletti G, Poli M, Dossi R, et al. Antiangiogenic activity of aplidine, a new agent of marine origin. Br J Cancer. 2004;90:2418–2424. doi: 10.1038/sj.bjc.6601864. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 102.Natori T, Morita M, Akimoto K, Koezuka Y. Agelasphins, novel antitumor and immunostimulatory cerebrosides from the marine spongeAgelas mauritianus. Tetrahedron. 1994;50:2771–2784. doi: 10.1016/S0040-4020(01)86991-X. [DOI] [Google Scholar]
  • 103.Hayakawa Y, Rovero S, Forni G, Smyth MJ. α-Galactosylceramide (KRN7000) suppression of chemical- and oncogene-dependent carcinogenesis. Proc Natl Acad Sci USA. 2003;100:9464–9469. doi: 10.1073/pnas.1630663100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 104.Newman DJ. The bryostatins. In: Cragg GM, Kingston DGI, Newman DJ, editors. Anticancer Agents from Natural Products. Boca Raton, FL: CRC Press; 2005. pp. 137–150. [Google Scholar]
  • 105.Honore S, Kamath K, Braguer D, Wilson L, Briand C, Jordan MA. Suppression of microtubule dynamics by discodermolide by a novel mechanism is associated with mitotic arrest and inhibition of tumor cell proliferation. Mol Cancer Ther. 2003;2:1303–1311. [PubMed] [Google Scholar]
  • 106.Pettit GR, Kamano Y, Herald CL, et al. The isolation and structure of a remarkable marine animal antineoplastic constituent: dolastatin 10. J Am Chem Soc. 1987;109:6883–6885. doi: 10.1021/ja00256a070. [DOI] [Google Scholar]
  • 107.Pettit GR, Kamano Y, Dufresne C, Cerny RL, Herald CL, Schmidt JM. Isolation and structure of the cytostatic linear depsipeptide dolastatin 15. J Am Chem Soc. 1989;54:6005–6006. [Google Scholar]
  • 108.Kerbrat P, Dieras V, Pavlidis N, Ravaud A, Wanders J, Fumoleau P. Phase II study LU103793 (dolastatin analogue) in patients with metastatic breast cancer. Eur J Cancer. 2003;39:317–320. doi: 10.1016/S0959-8049(02)00531-2. [DOI] [PubMed] [Google Scholar]
  • 109.Marks RS, Graham DL, Sloan JA, et al. A phase II study of the dolastatin 15 analogue LU 103793 in the treatment of advanced non-small-cell lung cancer. Am J Clin Oncol. 2003;26:336–337. doi: 10.1097/00000421-200308000-00005. [DOI] [PubMed] [Google Scholar]
  • 110.Kindler HL, Tothy PK, Wolff R, et al. Phase II trials of dolastatin-10 in advanced pancreaticobiliary cancers. Invest New Drugs. 2005;23:489–493. doi: 10.1007/s10637-005-2909-x. [DOI] [PubMed] [Google Scholar]
  • 111.Perez EA, Hillman DW, Fishkin PA, et al. Phase II trial of dolastatin-10 in patients with advanced breast cancer. Invest New Drugs. 2005;23:257–261. doi: 10.1007/s10637-005-6735-y. [DOI] [PubMed] [Google Scholar]
  • 112.Jordan MA, Kamath K, Manna T, et al. The primary antimiotic mechanism of action of the synthetic halichondrin E7389 is suppression of microtubule growth. Mol Cancer Ther. 2005;4:1086–1095. doi: 10.1158/1535-7163.MCT-04-0345. [DOI] [PubMed] [Google Scholar]
  • 113.Loganzo F, Hari M, Annable T, et al. Cells resistant to HT-286 do not overexpress P-glycoprotein but have reduced drug accumulation and a point mutation in α-tubulin. Mol Cancer Ther. 2004;3:1319–1327. [PubMed] [Google Scholar]
  • 114.Suárez Y, González L, Cuadrado A, Berciano M, Lafarga M, Muñoz A. Kahalalide F, a new marine-derived compound, induces oncosis in human prostate and breast cancer cells. Mol Cancer Ther. 2003;2:863–872. [PubMed] [Google Scholar]
  • 115.Janmaat ML, Rodriguez JA, Jimeno J, Kruyt FAE, Giaccone G. Kahalalide F induces necrosis-like cell death that involves depletion of ErB3 and inhibition of Akt signaling. Mol Pharmacol. 2005;68:502–510. doi: 10.1124/mol.105.011361. [DOI] [PubMed] [Google Scholar]
  • 116.Jimeno JM, Garcia-Gravalos D, Avila J, Smith B, Grant W, Faircloth GT. ES-285, a marine natural product with activity against solid tumors.Clin Cancer Res. 1999;5:3792s.
  • 117.Cuadros R, Garcini EM, Wandosell F, Faircloth G, Fernández-Sousa JM, Avila J. The marine compound spisulosine, an inhibitor of cell proliferation, promotes the disassembly of actin stress fibers. Cancer Lett. 2000;152:23–29. doi: 10.1016/S0304-3835(99)00428-0. [DOI] [PubMed] [Google Scholar]
  • 118.Moore KS, Wehrli S, Roger H, et al. Squalamine: an aminosterol antibiotic from the shark. Proc Natl Acad Sci USA. 1993;90:1354–1358. doi: 10.1073/pnas.90.4.1354. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 119.Hao D, Hammond LA, Eckhardt SG, et al. A phase I and pharmacokinetic study of squalamine, an aminosterol angiogenesis inhibitor. Clin Cancer Res. 2003;9:2465–2471. [PubMed] [Google Scholar]
  • 120.Soares DG, Poletto NP, Bonatto D, Salvador M, Schwartsmann G, Henriques JAP. Low cytotoxicity of ecteinascidin 743 in yeast lacking the major endonucleolytic enzymes of base and nucleotide excision repair pathways. Biochem Pharmacol. 2005;70:59–69. doi: 10.1016/j.bcp.2005.04.013. [DOI] [PubMed] [Google Scholar]
  • 121.Rinehart KL. Antitumor compounds from tunicates. Med Res Rev. 2000;20:1–27. doi: 10.1002/(SICI)1098-1128(200001)20:1<1::AID-MED1>3.0.CO;2-A. [DOI] [PubMed] [Google Scholar]
  • 122.Chen X, Chen J, De Paolis M, Zhu J. Synthetic studies toward ecteinascidin 743. J Org Chem. 2005;70:4397–4408. doi: 10.1021/jo050408k. [DOI] [PubMed] [Google Scholar]
  • 123.Malhotra R, Singh L, Eng J, Raufman J-P. Exendin-4, a new peptide fromHeloderma suspectum venom, potentiates cholecystokinin-induced amylase release from rat pancreatic acini. Regul Pept. 1992;41:149–156. doi: 10.1016/0167-0115(92)90044-U. [DOI] [PubMed] [Google Scholar]
  • 124.Keating GM. Exenatide. Drugs. 2005;65:1681–1692. doi: 10.2165/00003495-200565120-00008. [DOI] [PubMed] [Google Scholar]
  • 125.Gladwell TD. Bivalirudin: A direct thrombin inhibitor. Clin Ther. 2002;24:38–58. doi: 10.1016/S0149-2918(02)85004-4. [DOI] [PubMed] [Google Scholar]
  • 126.Ledizet M, Harrison LM, Koskia RA, Cappello M. Discovery and preclinical development of antithrombotics from hematophagous invertebrates. Curr Med Chem Cardiovasc Hematol Agents. 2005;3:1–10. doi: 10.2174/1568016052773315. [DOI] [PubMed] [Google Scholar]

Articles from The AAPS Journal are provided here courtesy of American Association of Pharmaceutical Scientists

RESOURCES