Skip to main content
The AAPS Journal logoLink to The AAPS Journal
. 2006 May 26;8(2):E348–E352. doi: 10.1007/BF02854905

Role of morphine's metabolites in analgesia: Concepts and controversies

Erica Wittwer 1,, Steven E Kern 1,2
PMCID: PMC3231567  PMID: 16796385

Abstract

The metabolites of morphine, morphine-6-glucuronide (M6G) and morphine-3-glucuronide (M3G), have been extensively studied for their contribution to clinical effects following administration of morphine. Those contributions to both the desired effect (ie, analgesia) and the undesired effects (eg, nausea, respiratory depression) are the subject of clinical controversy. Much attention and effort have been directed at investigating the properties of M6G because of interest in this substance as a possible substitute for morphine. It exhibits increased potency and the possibility of a better side effect profile compared with morphine, although the reported relative benefits vary widely. M3G is not analgesic, but its role in producing side effects, including the development of clinical tolerance, has been proposed. This review is focused on M6G and the factors that contribute to its clinical utility. The formation and distribution of M6G are presented, as are the analgesic effect and the onset of this effect. The impact of genetics, age, and gender on M6G and its effects is also reviewed.

Keywords: Morphine, morphine-6-glucuronide, clinical pharmacology, clinical covariates

Full Text

The Full Text of this article is available as a PDF (162.3 KB).

References

  • 1.Coffman B, King C, Rios G, Tephly T. The glucuronidation of opioids, other xenobiotics, and androgens by human UGT2B7Y(268) and UGT2B7H(268) Drug Metab Dispos. 1998;26:73–77. [PubMed] [Google Scholar]
  • 2.Ratka A, Wittwer E, Baker L, Kern S. Pharmacokinetics of morphine, morphine-3-glucuronide, and morphine-6-glucuronide in healthy older men and women. Am J Pain Manage. 2004;14:45–55. [Google Scholar]
  • 3.Stone A, Mackenzie P, Galetin A, Houston J, Miners J. Isoform selectivity and kinetics of morphine 3- and 6-glucuronidation by human UDP-glucuronosyltransferases: evidence for atypical glucuronidation kinetics by UGT2B7. Drug Metab Dispos. 2003;31:1086–1089. doi: 10.1124/dmd.31.9.1086. [DOI] [PubMed] [Google Scholar]
  • 4.Aasmundstad T, Storset P. Influence of ranitidine on the morphine-3-glucuronide to morphine-6-glucuronide ratio after oral administration of morphine in humans. Hum Exp Toxicol. 1998;17:347–352. doi: 10.1191/096032798678908837. [DOI] [PubMed] [Google Scholar]
  • 5.Faura C, Collins S, Moore R, McQuay H. Systematic review of factors affecting the ratio of morphine and its major metabolites. Pain. 1998;74:43–53. doi: 10.1016/S0304-3959(97)00142-5. [DOI] [PubMed] [Google Scholar]
  • 6.Antonilli L, Suriano C, Paolone G, Badiani A, Nencini P. Repeated exposures to heroin and/or cadmium alter the rate of formation of morphine glucuronides in the rat. J Pharmacol Exp Ther. 2003;307:651–660. doi: 10.1124/jpet.103.055467. [DOI] [PubMed] [Google Scholar]
  • 7.Antonilli L, Semeraro F, Suriano C, Signore L, Nencini P. High levels of morphine-6-glucuronide in street heroin addicts. Psychopharmacology (Berl) 2003;170:200–204. doi: 10.1007/s00213-003-1531-x. [DOI] [PubMed] [Google Scholar]
  • 8.Lotsch J, Geisslinger G. Morphine-6-glucuronide: an analgesic of the future? Clin Pharmacokinet. 2001;40:485–499. doi: 10.2165/00003088-200140070-00001. [DOI] [PubMed] [Google Scholar]
  • 9.Smith G, Smith M. Morphine-3-glucuronide: evidence to support its putative role in the development of tolerance to the antinociceptive effects of morphine in the rat. Pain. 1995;62:51–60. doi: 10.1016/0304-3959(94)00228-7. [DOI] [PubMed] [Google Scholar]
  • 10.Vaughan CW, Connor M. In search of a role for the morphine metabolite morphine-3-glucuronide. Anesth Analg. 2003;97:311–312. doi: 10.1213/01.ANE.0000078220.83604.7E. [DOI] [PubMed] [Google Scholar]
  • 11.Andersen G, Christrup L, Sjogren P. Relationships among morphine metabolism, pain and side effects during long-term treatment: an update. J Pain Symptom Manage. 2003;25:74–91. doi: 10.1016/S0885-3924(02)00531-6. [DOI] [PubMed] [Google Scholar]
  • 12.Ashby M, Fleming B, Wood M, Somogyi A. Plasma morphine and glucuronide (M3G and M6G) concentrations in hospice inpatients. J Pain Symptom Manage. 1997;14:157–167. doi: 10.1016/S0885-3924(97)00020-1. [DOI] [PubMed] [Google Scholar]
  • 13.Baker L, Hyrien O, Ratka A. Contributions of morphine-3-glucuronide and morphine-6-glucuronide to differences in morphine analgesia in humans. Am J Pain Manage. 2003;13:16–28. [Google Scholar]
  • 14.Hemstapat K, Monteith G, Smith D, Smith M. Morphine-3-glucuronide's neuro-excitatory effects are mediated by indirect activation of NMDA receptors: mechanistic studies in embryonic cultured hippocampal neurones. Anesth Analg. 2003;97:494–505. doi: 10.1213/01.ANE.0000059225.40049.99. [DOI] [PubMed] [Google Scholar]
  • 15.Okura T, Saito M, Nakanishi M, et al. Different distribution of morphine and morphine-6β-glucuronide after intracerebroventricular injection in rats. Br J Pharmacol. 2003;140:211–217. doi: 10.1038/sj.bjp.0705418. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Mantione KJ, Goumon Y, Esch T, Stefano Gb. Morphine 6B glucuronide: fortuitous morphine metabolite or preferred peripheral regulatory opiate? Med Sci Monit. 2005;11:MS43–MS46. [PubMed] [Google Scholar]
  • 17.Lotsch J, Skarke C, Darimont J, Schmidt H, Geisslinger G. The transfer half-life of morphine-6-glucuronide from plasma to effect site assessed by pupil size measurement in healthy volunteers. Anesthesiology. 2001;95:1329–1338. doi: 10.1097/00000542-200112000-00009. [DOI] [PubMed] [Google Scholar]
  • 18.Tunblad K, Hammarlund-Udenaes M, Jonsson EN. Influence of probenecid on the delivery of morphine-6-glucuronide to the brain. Eur J Pharm Sci. 2005;24:49–57. doi: 10.1016/j.ejps.2004.09.009. [DOI] [PubMed] [Google Scholar]
  • 19.Bouw MRXR, Tunblad K, Hammarlund-Udenaes M. Blood-brain barrier transport and brain distribution of morphine-6-glucuronide in relation to the antinociceptive effect in rats—pharmacokinetic/pharmacodynamic modelling. Br J Pharmacol. 2001;134:1796–1804. doi: 10.1038/sj.bjp.0704406. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Bourasset F, Cisternino S, Temsamani J, Scherrmann JM. Evidence for an active transport of morphine-6-β-D-glucuronide but not P-glycoprotein-mediated at the blood-brain barrier. J Neurochem. 2003;86:1564–1567. doi: 10.1046/j.1471-4159.2003.01990.x. [DOI] [PubMed] [Google Scholar]
  • 21.Lotsch J, Skarke C, Liefhold J, Geisslinger G. Genetic predictors of the clinical response to opioid analgesics. Clin Pharmacokinet. 2004;43:983–1013. doi: 10.2165/00003088-200443140-00003. [DOI] [PubMed] [Google Scholar]
  • 22.Buetler TMW, Wilder-Smith OH, Wilder-Smith CH, Aebi S, Cerny T, Brenneisen R. Analgesic action of i.v. morphine-6-glucuronide in healthy volunteers. Br J Anaesth. 2000;84:97–99. doi: 10.1093/oxfordjournals.bja.a013391. [DOI] [PubMed] [Google Scholar]
  • 23.Hanna MHEK, Fung M. Randomized, double-blind study of the analgesic efficacy of morphine-6-glucuronide versus morphine sulfate for postoperative pain in major surgery. Anesthesiology. 2005;102:815–821. doi: 10.1097/00000542-200504000-00018. [DOI] [PubMed] [Google Scholar]
  • 24.Motamed C, Mazoit X, Ghanouchi K, et al. Preemptive intravenous morphine-6-glucuronide is ineffective for postoperative pain relief. Anesthesiology. 2000;92:355–360. doi: 10.1097/00000542-200002000-00015. [DOI] [PubMed] [Google Scholar]
  • 25.Langlade A, Carr DB, Serrie A, Silbert BS, Szyfelbein SK, Lipkowski AW. Enhanced potency of intravenous, but not intrathecal, morphine and morphine-6-glucuronide after burn trauma. Life Sci. 1994;54:1699–1709. doi: 10.1016/0024-3205(94)00610-5. [DOI] [PubMed] [Google Scholar]
  • 26.Grace D, Fee J. A comparison of intrathecal morphine-6-glucuronide and intrathecal morphine sulfate as analgesics for total hip replacement. Anesth Analg. 1996;83:1055–1059. doi: 10.1097/00000539-199611000-00027. [DOI] [PubMed] [Google Scholar]
  • 27.Yamada H, Ishii K, Ishii Y, et al. Formation of highly analgesic morphine-6-glucuronide following physiologic concentration of morphine in human brain. J Toxicol Sci. 2003;28:395–401. doi: 10.2131/jts.28.395. [DOI] [PubMed] [Google Scholar]
  • 28.Cann C, Curran J, Milner T, Ho B. Unwanted effects of morphine-6-glucuronide and morphine. Anaesthesia. 2002;57:1200–1203. doi: 10.1046/j.1365-2044.2002.02624_2.x. [DOI] [PubMed] [Google Scholar]
  • 29.Romberg R, Olofsen E, Sarton E, Teppema L, Dahan A. Pharmacodynamic effect of morphine-6-glucuronide versus morphine on hypoxic and hypercapnic breathing in healthy volunteers. Anesthesiology. 2003;99:788–798. doi: 10.1097/00000542-200310000-00008. [DOI] [PubMed] [Google Scholar]
  • 30.Kilpatrick G, Smith T. Morphine-6-glucuronide: actions and mechanisms. Med Res Rev. 2005;25:521–544. doi: 10.1002/med.20035. [DOI] [PubMed] [Google Scholar]
  • 31.Pasternak G. Incomplete cross tolerance and multiple mu opioid peptide receptors. Trends Pharmacol Sci. 2001;22:67–70. doi: 10.1016/S0165-6147(00)01616-3. [DOI] [PubMed] [Google Scholar]
  • 32.Rossi GC, Pan YX, Brown GP, Pasternak GW. Antisense mapping the MOR-1 opioid receptor: evidence for alternative splicing and a novel morphine-6-beta-glucuronide receptor. FEBS Lett. 1995;369:192–196. doi: 10.1016/0014-5793(95)00757-Z. [DOI] [PubMed] [Google Scholar]
  • 33.Rossi GC, Leventhal L, Pan YX, et al. Antisense mapping of MOR-1 in rats: distinguishing between morphine and morphine-6-beta-glucuronide antinociception. J Pharmacol Exp Ther. 1997;281:109–114. [PubMed] [Google Scholar]
  • 34.Zelcer N, Wetering K, Hillebrand M, et al. Mice lacking multidrug resistance protein 3 show altered morphine pharmacokinetics and morphine-6-glucuronide antinociception. Proc Natl Acad Sci USA. 2005;102:7274–7279. doi: 10.1073/pnas.0502530102. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.Lotsch J, Zimmermann M, Darimont J, et al. Does the A118G polymorphism at the μ-opioid receptor gene protect against morphine-6-glucuronide toxicity? Anesthesiology. 2002;97:814–819. doi: 10.1097/00000542-200210000-00011. [DOI] [PubMed] [Google Scholar]
  • 36.Lotsch J, Skarke C, Grosch S, Darimont J, Schmidt H, Geisslinger G. The polymorphism A118G of the human mu-opioid receptor gene decreased the pupil constrictory effect of morphine-6-glucuronide but not that of morphine. Pharmacogenetics. 2002;12:3–9. doi: 10.1097/00008571-200201000-00002. [DOI] [PubMed] [Google Scholar]
  • 37.Romberg R, Olofsen E, Bijl H, et al. Polymorphims of mu-opioid receptor gene (OPRM1:c.118A>G) does not protect against opioid-induced respiratory depression despite reduced analgesic response. Anesthesiology. 2005;102:522–530. doi: 10.1097/00000542-200503000-00008. [DOI] [PubMed] [Google Scholar]
  • 38.Mogil JSSS, Strasburg K, Kaplan L, et al. Melanocortin-1 receptor gene variants affect pain and μ-opioid analgesia in mice and humans. J Med Genet. 2005;42:583–587. doi: 10.1136/jmg.2004.027698. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39.Wittwer E, Ratka A, Kern S. The impact of endogeneous steroidal hormones on the pharmacokinetics of oral morphine: a population analysis; Philadelphia, PA: LWW Publishers; 2004. [Google Scholar]
  • 40.Murthy BR, Pollack GM, Brouwer KL. Contribution of morphine-6-glucuronide to antinociception following intravenous administration of morphine to healthy volunteers. J Clin Pharmacol. 2002;42:569–576. doi: 10.1177/00912700222011508. [DOI] [PubMed] [Google Scholar]

Articles from The AAPS Journal are provided here courtesy of American Association of Pharmaceutical Scientists

RESOURCES