Skip to main content
The AAPS Journal logoLink to The AAPS Journal
. 2006 May 26;8(2):E371–E382. doi: 10.1007/BF02854908

In vitro and direct in vivo testing of mixture-based combinatorial libraries for the identification of highly active and specific opiate ligands

Richard A Houghten 1,, Colette T Dooley 1, Jon R Appel 1
PMCID: PMC3231577  PMID: 16796388

Abstract

The use of combinatorial libraries for the identification of novel opiate and related ligands in opioid receptor assays is reviewed. Case studies involving opioid assays used to demonstrate the viability of combinatorial libraries are described. The identification of new opioid peptides composed of L-amino acids, D-amino acids, or L-, D-, and unnatural amino acids is reviewed. New opioid compounds have also been identified from peptidomimetic libraries, such as peptoids and alkylated dipeptides, and those identified from acyclic (eg, polyamine, urea) and heterocyclic (eg, bicyclic guanidine) libraries are reviewed.

Keywords: positional scanning libraries, opioid receptor, in vivo screening, mixtures, peptides, peptidomimetics

Full Text

The Full Text of this article is available as a PDF (244.4 KB).

References

  • 1.Pert CB, Snyder SH. Properties of opiate-receptor binding in rat brain. Proc Natl Acad Sci USA. 1973;70:2243–2247. doi: 10.1073/pnas.70.8.2243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Simon EJ, Hiller JM, Edelman I. Stereospecific binding of the potent narcotic analgesic (3H) etorphine to rat-brain homogenate. Proc Natl Acad Sci USA. 1973;70:1947–1949. doi: 10.1073/pnas.70.7.1947. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Terenius L. Characteristics of the “receptor” for narcotic analgesics in synaptic plasma fraction from rat brain. Acta Pharmacol Toxicol (Copenh) 1973;33:377–384. doi: 10.1111/j.1600-0773.1973.tb01539.x. [DOI] [PubMed] [Google Scholar]
  • 4.Hughes J, Smith TW, Kosterlitz HW, Fothergill LA, Morgan BA, Morris HR. Identification of two related pentapeptides from the brain with potent opiate agonist activity. Nature. 1975;258:577–579. doi: 10.1038/258577a0. [DOI] [PubMed] [Google Scholar]
  • 5.Fowler CJ, Fraser GL. Mu-, delta-, and kappa-opioid receptors and their subtypes. A critical review with emphasis on radioligand binding experiments. Neurochem Int. 1994;24:401–426. doi: 10.1016/0197-0186(94)90089-2. [DOI] [PubMed] [Google Scholar]
  • 6.Chen Y, Mestek A, Liu J, Hurley JA, Yu L. Molecular cloning and functional expression of a mu opioid receptor from rat brain. Mol Pharmacol. 1993;44:8–12. [PubMed] [Google Scholar]
  • 7.Fukuda K, Kato S, Mori K, Nishi M, Takeshima H. Primary structures and expression from cDNAs of rat opioid receptor delta and mu subtypes. FEBS Lett. 1993;327:311–314. doi: 10.1016/0014-5793(93)81011-N. [DOI] [PubMed] [Google Scholar]
  • 8.Kieffer BL, Befort K, Gaveriaux-Ruff C, Hirth CG. The delta opioid receptor: isolation of a cDNA by expression cloning and pharmacological characterization. Proc Natl Acad Sci USA. 1992;89:12048–12052. doi: 10.1073/pnas.89.24.12048. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Evans CJ, Keith DE, Morrison H, Magendzo K, Edwards RH. Cloning of delta opioid receptor by functional expression. Science. 1992;258:1952–1955. doi: 10.1126/science.1335167. [DOI] [PubMed] [Google Scholar]
  • 10.Yasuda K, Raynor K, Kong H, et al. Cloning and functional comparison of kappa and delta opioid receptors from mouse brain. Proc Natl Acad Sci USA. 1993;90:6736–6740. doi: 10.1073/pnas.90.14.6736. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Cwirla SE, Peters EA, Barrett RW, Dower WJ. Peptides on phage: a vast library of peptides for identifying ligands. Proc Natl Acad Sci USA. 1990;87:6378–6382. doi: 10.1073/pnas.87.16.6378. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Devlin JJ, Panganiban LC, Devlin PE. Random peptide libraries: a source of specific protein binding molecules. Science. 1990;249:404–406. doi: 10.1126/science.2143033. [DOI] [PubMed] [Google Scholar]
  • 13.Scott JK, Smith GP. Searching for peptide ligands with an epitope library. Science. 1990;249:386–390. doi: 10.1126/science.1696028. [DOI] [PubMed] [Google Scholar]
  • 14.Geysen HM, Rodda SJ, Mason TJ. A priori delineation of a peptide which mimics a discontinuous antigenic determinant. Mol Immunol. 1986;23:709–715. doi: 10.1016/0161-5890(86)90081-7. [DOI] [PubMed] [Google Scholar]
  • 15.Lam KS, Salmon SE, Hersh EM, Hruby VJ, Kazmierski WM, Knapp RJ. A new type of synthetic peptide library for identifying ligand-binding activity. Nature. 1991;354:82–84. doi: 10.1038/354082a0. [DOI] [PubMed] [Google Scholar]
  • 16.Houghten RA, Pinilla C, Blondelle SE, Appel JR, Dooley CT, Cuervo JH. Generation and use of synthetic peptide combinatorial libraries for basic research and drug discovery. Nature. 1991;354:84–86. doi: 10.1038/354084a0. [DOI] [PubMed] [Google Scholar]
  • 17.Houghten RA, Appel JR, Blondelle SE, Cuervo JH, Dooley CT, Pinilla C. The use of synthetic peptide combinatorial libraries for the identification of bioactive peptides. Biotechniques. 1992;13:412–421. [PubMed] [Google Scholar]
  • 18.Houghten RA, Pinilla C, Appel JR, et al. Mixture-based synthetic combinatorial libraries. J Med Chem. 1999;42:3743–3778. doi: 10.1021/jm990174v. [DOI] [PubMed] [Google Scholar]
  • 19.Merrifield RBJ. Solid phase peptide synthesis, I: the synthesis of a tetrapeptide. J Am Chem Soc. 1963;85:2149–2154. doi: 10.1021/ja00897a025. [DOI] [Google Scholar]
  • 20.Merrifield B. Solid phase synthesis. Science. 1986;232:341–347. doi: 10.1126/science.3961484. [DOI] [PubMed] [Google Scholar]
  • 21.Frank R. Spot-synthesis: an easy and flexible tool to study molecular recognition. In: Epton R, editor. Innovation and Perspectives in Solid Phase Synthesis: Peptides, Proteins and Nucleic Acids. Birmingham, UK: Mayflower Worldwide; 1994. pp. 509–512. [Google Scholar]
  • 22.Eichler J, Houghten RA. Identification of substrate-analog trypsin inhibitors through the screening of synthetic peptide combinatorial libraries. Biochemistry. 1993;32:11035–11041. doi: 10.1021/bi00092a013. [DOI] [PubMed] [Google Scholar]
  • 23.Fodor SPA, Read JL, Pirrung MC, Stryer L, Lu AT, Solas D. Light-directed, spatially addressable parallel chemical synthesis. Science. 1991;251:767–773. doi: 10.1126/science.1990438. [DOI] [PubMed] [Google Scholar]
  • 24.Furka A, Sebestyen F, Asgedom M, Dibo G. General method for rapid synthesis of multicomponent peptide mixtures. Int J Pept Protein Res. 1991;37:487–493. doi: 10.1111/j.1399-3011.1991.tb00765.x. [DOI] [PubMed] [Google Scholar]
  • 25.Ostresh JM, Winkle JH, Hamashin VT, Houghten RA. Peptide libraries: determination of relative reaction rates of protected amino acids in competitive couplings. Biopolymers. 1994;34:1681–1689. doi: 10.1002/bip.360341212. [DOI] [PubMed] [Google Scholar]
  • 26.Ostresh JM, Schoner CC, Hamashin VT, Nefzi A, Meyer J-P, Houghten RA. Solid phase synthesis of trisubstituted bicyclic guanidines via cyclization of reduced N-acylated dipeptides. J Org Chem. 1998;63:8622–8623. doi: 10.1021/jo9810617. [DOI] [Google Scholar]
  • 27.Nefzi A, Ostresh JM, Houghten RA. Solid phase synthesis of 1, 3, 4, 7-tetrasubstituted perhydro-1,4-diazepine-2,5-diones. Tetrahedron Lett. 1997;38:4943–4946. doi: 10.1016/S0040-4039(97)01086-1. [DOI] [Google Scholar]
  • 28.Nefzi A, Ostresh JM, Meyer J-P, Houghten RA. Solid phase synthesis of heterocyclic compounds from linear peptides: cyclic ureas and thioureas. Tetrahedron Lett. 1997;38:931–934. doi: 10.1016/S0040-4039(96)02516-6. [DOI] [Google Scholar]
  • 29.Nefzi A, Dooley CT, Ostresh JM, Houghten RA. Combinatorial chemistry: from peptides and peptidomimetics to small organic and heterocyclic compounds. Bioorg Med Chem Lett. 1998;8:2273–2278. doi: 10.1016/S0960-894X(98)00412-0. [DOI] [PubMed] [Google Scholar]
  • 30.Nefzi A, Giulianotti M, Houghten RA. Solid phase synthesis of 2, 4, 5-trisubstituted thiomorpholin-3-ones. Tetrahedron Lett. 1998;39:3671–3674. doi: 10.1016/S0040-4039(98)00645-5. [DOI] [Google Scholar]
  • 31.Ostresh JM, Husar GM, Blondelle SE, Dörner B, Weber PA, Houghten RA. “Libraries from libraries”: chemical transformation of combinatorial libraries to extend the range and repertoire of chemical diversity. Proc Natl Acad Sci USA. 1994;91:11138–11142. doi: 10.1073/pnas.91.23.11138. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.Cuervo JH, Weitl F, Ostresh JM, Hamashin VT, Hannah AL, Houghten RA. Polyalkylamine chemical combinatorial libraries. In: Maia HLS, editor. Peptides 94: Proceedings of the 23rd European Peptide Symposium. Leiden, The Netherlands: ESCOM; 1995. pp. 465–466. [Google Scholar]
  • 33.Pinilla C, Appel JR, Blanc P, Houghten RA. Rapid identification of high affinity peptide ligands using positional scanning synthetic peptide combinatorial libraries. Biotechniques. 1992;13:901–905. [PubMed] [Google Scholar]
  • 34.Dooley CT, Houghten RA. The use of positional scanning synthetic combinatorial libraries for the rapid determination of opioid receptor ligands. Life Sci. 1993;52:1509–1517. doi: 10.1016/0024-3205(93)90113-H. [DOI] [PubMed] [Google Scholar]
  • 35.Konings DAM, Wyatt JR, Ecker DJ, Freier SM. Deconvolution of combinatorial libraries for drug discovery: theoretical comparison of pooling strategies. J Med Chem. 1996;39:2710–2719. doi: 10.1021/jm960168o. [DOI] [PubMed] [Google Scholar]
  • 36.Wilson-Lingardo L, Davis PW, Ecker DJ, et al. Deconvolution of combinatorial libraries for drug discovery: experimental comparison of pooling strategies. J Med Chem. 1996;39:2720–2726. doi: 10.1021/jm960169g. [DOI] [PubMed] [Google Scholar]
  • 37.Dooley CT, Houghten RA. A comparison of combinatorial library approaches for the study of opioid compounds. Perspect Drug Disc Design. 1995;2:287–304. doi: 10.1007/BF02172068. [DOI] [Google Scholar]
  • 38.McLafferty MA, Kent RB, Ladner RC, Markland W. M13 bacteriophage displaying disulfide-constrained microproteins. Gene. 1993;128:29–36. doi: 10.1016/0378-1119(93)90149-W. [DOI] [PubMed] [Google Scholar]
  • 39.Kassarjian A, Schellenberger V, Turck CW. Screening of synthetic peptide libraries with radiolabeled acceptor molecules. Pept Res. 1993;6:129–133. [PubMed] [Google Scholar]
  • 40.Salmon SE, Lam KS, Lebl M, et al. Discovery of biologically active peptides in random libraries: solution-phase testing after staged orthogonal release from resin beads. Proc Natl Acad Sci USA. 1993;90:11708–11712. doi: 10.1073/pnas.90.24.11708. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41.Houghten RA, Dooley CT. The use of synthetic peptide combinatorial libraries for the determination of peptide ligands in radioreceptor assays: opioid peptides. Bioorg Med Chem Lett. 1993;3:405–412. doi: 10.1016/S0960-894X(01)80222-5. [DOI] [Google Scholar]
  • 42.Dooley CT, Chung NN, Schiller PW, Houghten RA. Acetalins: opioid receptor antagonists determined through the use of synthetic peptide combinatorial libraries. Proc Natl Acad Sci USA. 1993;90:10811–10815. doi: 10.1073/pnas.90.22.10811. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Dooley CT, Hope S, Houghten RA. Rapid identification of novel opioid peptides from an N-acetylated synthetic combinatorial library. Regul Pept. 1994;54:87–88. doi: 10.1016/0167-0115(94)90402-2. [DOI] [Google Scholar]
  • 44.Dooley CT, Kaplan RA, Chung NN, Schiller PW, Bidlack JM, Houghten RA. Six highly active mu-selective opioid peptides identified from two synthetic combinatorial libraries. Pepts Res. 1995;8:124–137. [PubMed] [Google Scholar]
  • 45.Dooley CT, Hope SK, Houghten RA. Identification of tetrameric opioid peptides from a combinatorial library of L-,D- and nonproteinogenic amino acids. In: Maia HLS, editor. Peptides 94: Proceedings of the 23rd European Peptide Symposium. Leiden, The Netherlands: ESCOM; 1995. pp. 805–806. [Google Scholar]
  • 46.Dooley CT, Ny P, Bidlack JM, Houghten RAJ. Selective ligands for the mu, delta, and kappa opioid receptors from a single mixture-based tetrapeptide positional scanning combinatorial library. Biol Chem. 1998;273:18848–18856. doi: 10.1074/jbc.273.30.18848. [DOI] [PubMed] [Google Scholar]
  • 47.Pinilla C, Appel JR, Blondelle SE, et al. Versatility of positional scanning synthetic combinatorial libraries for the identification of individual compounds. Drug Dev Res. 1994;33:133–145. doi: 10.1002/ddr.430330210. [DOI] [Google Scholar]
  • 48.Dooley CT, Houghten RA. Orphanin FQ: receptor binding and analog structure activity relationships in rat brain. Life Sci. 1996;59:PL23–PL29. doi: 10.1016/0024-3205(96)00261-5. [DOI] [PubMed] [Google Scholar]
  • 49.Dooley CT, Chung NN, Wilkes BC, et al. An all D-amino acid opioid peptide with central analgesic activity from a combinatorial library. Science. 1994;266:2019–2022. doi: 10.1126/science.7801131. [DOI] [PubMed] [Google Scholar]
  • 50.Houghten RA, Dooley CT, Appel JR. De novo identification of highly active fluorescent kappa opioid ligands from a rhodamine labeled tetrapeptide positional scanning library. Bioorg Med Chem Lett. 2004;14:1947–1951. doi: 10.1016/j.bmcl.2004.01.090. [DOI] [PubMed] [Google Scholar]
  • 51.Zuckermann RN, Martin EJ, Spellmeyer DC, et al. Discovery of nanomolar ligands for 7-transmembrane G-protein-coupled receptors from a diverse N-(substituted)glycine peptoid library. J Med Chem. 1994;37:2678–2685. doi: 10.1021/jm00043a007. [DOI] [PubMed] [Google Scholar]
  • 52.Burgess K, Li W, Linthicum DS, et al. Libraries of opiate and anti-opiate peptidomimetics containing 2,3 methanoleucine. Bioorg Med Chem. 1997;5:1867–1871. doi: 10.1016/S0968-0896(97)00117-X. [DOI] [PubMed] [Google Scholar]
  • 53.Dorner B, Ostresh JM, Blondelle SE, Dooley CT, Houghten RA. Peptidomimetic synthetic combinatorial libraries. Adv Amino Acid Mimetics Peptidomimetics. 1997;1:109–125. [Google Scholar]
  • 54.Dooley CT, Houghten RA. Identification of mu-selective polyamine antagonists from a synthetic combinatorial library. Analgesia. 1995;1:400–404. [Google Scholar]
  • 55.Griffith MC, Dooley CT, Houghten RA, Kiely JS. Solid-phase synthesis, characterization, and screening of a 43,000 compound tetrahydroisoquinoline combinatorial library. In: Chaiken IM, Janda KD, editors. Molecular Diversity and Combinatorial Chemistry: Libraries and Drug Discovery. Washington, DC: American Chemical Society; 1996. pp. 50–57. [Google Scholar]
  • 56.Thomas JB, Fall MJ, Cooper JB, et al. Identification of an opioid kappa receptor subtype-selective N-substituent for (+)-(3R,4R)-dimethyl-4-(3-hydroxyphenyl)piperidine. J Med Chem. 1998;41:5188–5197. doi: 10.1021/jm980511k. [DOI] [PubMed] [Google Scholar]
  • 57.Meunier JC, Mollereau C, Toll L, et al. Isolation and structure of the endogenous agonist of the opioid receptor-like ORL 1 receptor. Nature. 1995;377:532–535. doi: 10.1038/377532a0. [DOI] [PubMed] [Google Scholar]
  • 58.Reinscheid RK, Nothacker HP, Bourson A, et al. Orphanin FQ: a neuropeptide that activates opioidlike G protein-coupled receptor. Science. 1995;270:792–794. doi: 10.1126/science.270.5237.792. [DOI] [PubMed] [Google Scholar]
  • 59.Dooley CT, Spaeth CG, Berzetei-Gurske IP, et al. Binding and in vitro activities of peptides with high affinity for the nociceptin/ orphanin FQ receptor, ORL1. J Pharmacol Exp Ther. 1997;283:735–741. [PubMed] [Google Scholar]
  • 60.Schiller PW, Nguyen TM, Berezowska I, et al. Synthesis and in vitro opioid activity profiles of DALDA analogues. Eur J Med Chem. 2000;35:895–901. doi: 10.1016/S0223-5234(00)01171-5. [DOI] [PubMed] [Google Scholar]
  • 61.Zhao GM, Qian X, Schiller PW, Szeto HH. Comparison of [Dmt1] DALDA and DAMGO in binding and G protein activation at mu, delta, and kappa opioid receptors. J Pharmacol Exp Ther. 2003;307:947–954. doi: 10.1124/jpet.103.054775. [DOI] [PubMed] [Google Scholar]
  • 62.Shimoyama M, Shimoyama N, Zhao GM, Schiller PW, Szeto HH. Antinociceptive and respiratory effects of intrathecal H-Tyr-D-Arg-Phe-Lys-NH2 (DALDA) and [Dmt1] DALDA. J Pharmacol Exp Ther. 2001;297:364–371. [PubMed] [Google Scholar]
  • 63.Zadina JE, Hackler L, Ge L-J, Kastin AJ. A potent and selective endogenous agonist for the muopiate receptor. Nature. 1997;386:499–502. doi: 10.1038/386499a0. [DOI] [PubMed] [Google Scholar]

Articles from The AAPS Journal are provided here courtesy of American Association of Pharmaceutical Scientists

RESOURCES