Abstract
The Drosophila melanogaster heat shock locus at 93D encodes at least three overlapping transcripts, 10-12 kilobases (kb), 1.9 kb, and 1.2 kb. The abundance of the three transcripts is significantly increased during heat shock; however, all are also found in non-heat-shocked cells. The 1.2-kb transcript is found in the cytoplasm. Sequence analysis of a 1.1-kb cDNA clone representing sequences within the 1.2-kb transcript and comparison to genomic sequences indicate that it is spliced; 700 base pairs of sequence found in genomic DNA are removed from the middle of the transcript. Sequence analysis further suggests that this RNA does not encode a heat shock protein. The largest open reading frame beginning with a methionine codon would encode a polypeptide of 34 amino acids. We have not been able to detect a heat shock-induced polypeptide of this size. A DNA clone from the analogous heat shock puff of Drosophila hydei has been analyzed by hybridization with the small subclones used to sequence the D. melanogaster cDNA plus a genomic fragment containing the 700-base-pair intron. Results of this hybridization indicated strong homology of the intron fragment. Weaker homology was detected with the two small fragments flanking the intron. Other fragments of the D. melanogaster cDNA showed no hybridization to the cloned D. hydei puff DNA.
Full text
PDF![1812](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0987/323174/385eb85c8976/pnas00310-0278.png)
![1813](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0987/323174/1e4f4e92c890/pnas00310-0279.png)
![1814](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0987/323174/65adb565ff16/pnas00310-0280.png)
![1815](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0987/323174/db36f1401826/pnas00310-0281.png)
![1816](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0987/323174/76563b7cb32f/pnas00310-0282.png)
Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ashburner M., Bonner J. J. The induction of gene activity in drosophilia by heat shock. Cell. 1979 Jun;17(2):241–254. doi: 10.1016/0092-8674(79)90150-8. [DOI] [PubMed] [Google Scholar]
- Chirgwin J. M., Przybyla A. E., MacDonald R. J., Rutter W. J. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry. 1979 Nov 27;18(24):5294–5299. doi: 10.1021/bi00591a005. [DOI] [PubMed] [Google Scholar]
- Dangli A., Grond C., Kloetzel P., Bautz E. K. Heat-shock puff 93 D from Drosophila melanogaster: accumulation of a RNP-specific antigen associated with giant particles of possible storage function. EMBO J. 1983;2(10):1747–1751. doi: 10.1002/j.1460-2075.1983.tb01652.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Denhardt D. T. A membrane-filter technique for the detection of complementary DNA. Biochem Biophys Res Commun. 1966 Jun 13;23(5):641–646. doi: 10.1016/0006-291x(66)90447-5. [DOI] [PubMed] [Google Scholar]
- Fey E. G., Wan K. M., Penman S. Epithelial cytoskeletal framework and nuclear matrix-intermediate filament scaffold: three-dimensional organization and protein composition. J Cell Biol. 1984 Jun;98(6):1973–1984. doi: 10.1083/jcb.98.6.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Holmgren R., Livak K., Morimoto R., Freund R., Meselson M. Studies of cloned sequences from four Drosophila heat shock loci. Cell. 1979 Dec;18(4):1359–1370. doi: 10.1016/0092-8674(79)90246-0. [DOI] [PubMed] [Google Scholar]
- Lakhotia S. C., Mukherjee T. Specific activation of puff 93D of Drosophila melanogaster by benzamide and the effect of benzamide treatment on the heat shock induced puffing activity. Chromosoma. 1980;81(1):125–136. doi: 10.1007/BF00292427. [DOI] [PubMed] [Google Scholar]
- Lengyel J. A., Ransom L. J., Graham M. L., Pardue M. L. Transcription and metabolism of RNA from the Drosophila melanogaster heat shock puff site 93D. Chromosoma. 1980;80(3):237–252. doi: 10.1007/BF00292683. [DOI] [PubMed] [Google Scholar]
- Mohler J., Pardue M. L. Deficiency mapping of the 93D heat-shock locus in Drosophila melanogaster. Chromosoma. 1982;86(4):457–467. doi: 10.1007/BF00330121. [DOI] [PubMed] [Google Scholar]
- Mohler J., Pardue M. L. Mutational Analysis of the Region Surrounding the 93d Heat Shock Locus of DROSOPHILA MELANOGASTER. Genetics. 1984 Feb;106(2):249–265. doi: 10.1093/genetics/106.2.249. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mount S. M. A catalogue of splice junction sequences. Nucleic Acids Res. 1982 Jan 22;10(2):459–472. doi: 10.1093/nar/10.2.459. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Peters F. P., Lubsen N. H., Sondermeijer P. J. Rapid sequence divergence in a heat shock locus of Drosophila. Chromosoma. 1980;81(2):271–280. doi: 10.1007/BF00285953. [DOI] [PubMed] [Google Scholar]
- Peters F. P., Lubsen N. H., Walldorf U., Moormann R. J., Hovemann B. The unusual structure of heat shock locus 2-48B in Drosophila hydei. Mol Gen Genet. 1984;197(3):392–398. doi: 10.1007/BF00329934. [DOI] [PubMed] [Google Scholar]
- Proudfoot N. J., Brownlee G. G. 3' non-coding region sequences in eukaryotic messenger RNA. Nature. 1976 Sep 16;263(5574):211–214. doi: 10.1038/263211a0. [DOI] [PubMed] [Google Scholar]
- Rigby P. W., Dieckmann M., Rhodes C., Berg P. Labeling deoxyribonucleic acid to high specific activity in vitro by nick translation with DNA polymerase I. J Mol Biol. 1977 Jun 15;113(1):237–251. doi: 10.1016/0022-2836(77)90052-3. [DOI] [PubMed] [Google Scholar]
- Russnak R. H., Candido E. P. Locus encoding a family of small heat shock genes in Caenorhabditis elegans: two genes duplicated to form a 3.8-kilobase inverted repeat. Mol Cell Biol. 1985 Jun;5(6):1268–1278. doi: 10.1128/mcb.5.6.1268. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Spradling A., Pardue M. L., Penman S. Messenger RNA in heat-shocked Drosophila cells. J Mol Biol. 1977 Feb 5;109(4):559–587. doi: 10.1016/s0022-2836(77)80091-0. [DOI] [PubMed] [Google Scholar]
- Thomas P. S. Hybridization of denatured RNA and small DNA fragments transferred to nitrocellulose. Proc Natl Acad Sci U S A. 1980 Sep;77(9):5201–5205. doi: 10.1073/pnas.77.9.5201. [DOI] [PMC free article] [PubMed] [Google Scholar]