Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1986 Mar;83(6):1936–1940. doi: 10.1073/pnas.83.6.1936

Isolation and structure of a C-terminally amidated nonopioid peptide, amidorphin-(8-26), from bovine striatum: a major product of proenkephalin in brain but not in adrenal medulla.

D C Liebisch, E Weber, B Kosicka, C Gramsch, A Herz, B R Seizinger
PMCID: PMC323199  PMID: 3456613

Abstract

We have isolated and sequenced a C-terminally amidated peptide from bovine striatum. The peptide was purified to homogeneity by adsorption to XAD-2 resins and four different HPLC steps. Amino acid composition analysis and gas-phase sequence analysis revealed identity of this peptide with residues 8-26 of the proenkephalin-derived opioid peptide amidorphin, which we have recently isolated from bovine adrenal medulla. C-terminal amidation of amidorphin-(8-26) from bovine striatum was demonstrated by its stability to carboxypeptidase A digestion and full crossreactivity in a radioimmunoassay that required the C-terminal amide group as part of the recognition site. The nonopioid peptide amidorphin-(8-26), which lacks the N-terminal [Met]enkephalin sequence of amidorphin, is a major product of the opioid peptide precursor proenkephalin in the brain. In the adrenal medulla, however, where amidorphin occurs in remarkably high concentrations, amidorphin-(8-26) could not be detected. This is indicative of differential post-translational processing of proenkephalin in different tissues. In the brain, as opposed to the adrenal medulla, amidorphin is further processed at the typical cleavage signals of two basic residues, giving rise to the nonopioid peptide amidorphin-(8-26) and, possibly, to the opioid peptide [Met]enkephalin. Thus, proenkephalin in the brain might be considered as a precursor in which an opioid peptide is linked with a nonopioid peptide of possibly different biological function.

Full text

PDF
1936

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Comb M., Seeburg P. H., Adelman J., Eiden L., Herbert E. Primary structure of the human Met- and Leu-enkephalin precursor and its mRNA. Nature. 1982 Feb 25;295(5851):663–666. doi: 10.1038/295663a0. [DOI] [PubMed] [Google Scholar]
  2. Cone R. I., Weber E., Barchas J. D., Goldstein A. Regional distribution of dynorphin and neo-endorphin peptides in rat brain, spinal cord, and pituitary. J Neurosci. 1983 Nov;3(11):2146–2152. doi: 10.1523/JNEUROSCI.03-11-02146.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Gubler U., Seeburg P., Hoffman B. J., Gage L. P., Udenfriend S. Molecular cloning establishes proenkephalin as precursor of enkephalin-containing peptides. Nature. 1982 Jan 21;295(5846):206–208. doi: 10.1038/295206a0. [DOI] [PubMed] [Google Scholar]
  4. Heinrikson R. L., Meredith S. C. Amino acid analysis by reverse-phase high-performance liquid chromatography: precolumn derivatization with phenylisothiocyanate. Anal Biochem. 1984 Jan;136(1):65–74. doi: 10.1016/0003-2697(84)90307-5. [DOI] [PubMed] [Google Scholar]
  5. Howells R. D., Kilpatrick D. L., Bhatt R., Monahan J. J., Poonian M., Udenfriend S. Molecular cloning and sequence determination of rat preproenkephalin cDNA: sensitive probe for studying transcriptional changes in rat tissues. Proc Natl Acad Sci U S A. 1984 Dec;81(23):7651–7655. doi: 10.1073/pnas.81.23.7651. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hunkapiller M. W., Hood L. E. Analysis of phenylthiohydantoins by ultrasensitive gradient high-performance liquid chromatography. Methods Enzymol. 1983;91:486–493. doi: 10.1016/s0076-6879(83)91045-5. [DOI] [PubMed] [Google Scholar]
  7. Kakidani H., Furutani Y., Takahashi H., Noda M., Morimoto Y., Hirose T., Asai M., Inayama S., Nakanishi S., Numa S. Cloning and sequence analysis of cDNA for porcine beta-neo-endorphin/dynorphin precursor. Nature. 1982 Jul 15;298(5871):245–249. doi: 10.1038/298245a0. [DOI] [PubMed] [Google Scholar]
  8. Liebisch D. C., Seizinger B. R., Michael G., Herz A. Novel opioid peptide amidorphin: characterization and distribution of amidorphin-like immunoreactivity in bovine, ovine, and porcine brain, pituitary, and adrenal medulla. J Neurochem. 1985 Nov;45(5):1495–1503. doi: 10.1111/j.1471-4159.1985.tb07218.x. [DOI] [PubMed] [Google Scholar]
  9. Loh Y. P., Brownstein M. J., Gainer H. Proteolysis in neuropeptide processing and other neural functions. Annu Rev Neurosci. 1984;7:189–222. doi: 10.1146/annurev.ne.07.030184.001201. [DOI] [PubMed] [Google Scholar]
  10. Mains R. E., Eipper B. A. Differences in the post-translational processing of beta-endorphin in rat anterior and intermediate pituitary. J Biol Chem. 1981 Jun 10;256(11):5683–5688. [PubMed] [Google Scholar]
  11. Mizuno K., Matsuo H. A novel protease from yeast with specificity towards paired basic residues. Nature. 1984 Jun 7;309(5968):558–560. doi: 10.1038/309558a0. [DOI] [PubMed] [Google Scholar]
  12. Nakanishi S., Inoue A., Kita T., Nakamura M., Chang A. C., Cohen S. N., Numa S. Nucleotide sequence of cloned cDNA for bovine corticotropin-beta-lipotropin precursor. Nature. 1979 Mar 29;278(5703):423–427. doi: 10.1038/278423a0. [DOI] [PubMed] [Google Scholar]
  13. Noda M., Furutani Y., Takahashi H., Toyosato M., Hirose T., Inayama S., Nakanishi S., Numa S. Cloning and sequence analysis of cDNA for bovine adrenal preproenkephalin. Nature. 1982 Jan 21;295(5846):202–206. doi: 10.1038/295202a0. [DOI] [PubMed] [Google Scholar]
  14. Noda M., Teranishi Y., Takahashi H., Toyosato M., Notake M., Nakanishi S., Numa S. Isolation and structural organization of the human preproenkephalin gene. Nature. 1982 Jun 3;297(5865):431–434. doi: 10.1038/297431a0. [DOI] [PubMed] [Google Scholar]
  15. Pittius C. W., Kley N., Loeffler J. P., Höllt V. Quantitation of proenkephalin A messenger RNA in bovine brain, pituitary and adrenal medulla: correlation between mRNA and peptide levels. EMBO J. 1985 May;4(5):1257–1260. doi: 10.1002/j.1460-2075.1985.tb03769.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Rosen H., Douglass J., Herbert E. Isolation and characterization of the rat proenkephalin gene. J Biol Chem. 1984 Nov 25;259(22):14309–14313. [PubMed] [Google Scholar]
  17. Seizinger B. R., Grimm C., Höllt V., Herz A. Evidence for a selective processing of proenkephalin B into different opioid peptide forms in particular regions of rat brain and pituitary. J Neurochem. 1984 Feb;42(2):447–457. doi: 10.1111/j.1471-4159.1984.tb02698.x. [DOI] [PubMed] [Google Scholar]
  18. Seizinger B. R., Höllt V., Herz A. Proenkephalin B (prodynorphin)-derived opioid peptides: evidence for a differential processing in lobes of the pituitary. Endocrinology. 1984 Aug;115(2):662–671. doi: 10.1210/endo-115-2-662. [DOI] [PubMed] [Google Scholar]
  19. Seizinger B. R., Liebisch D. C., Gramsch C., Herz A., Weber E., Evans C. J., Esch F. S., Böhlen P. Isolation and structure of a novel C-terminally amidated opioid peptide, amidorphin, from bovine adrenal medulla. Nature. 1985 Jan 3;313(5997):57–59. doi: 10.1038/313057a0. [DOI] [PubMed] [Google Scholar]
  20. Steiner D. F., Quinn P. S., Chan S. J., Marsh J., Tager H. S. Processing mechanisms in the biosynthesis of proteins. Ann N Y Acad Sci. 1980;343:1–16. doi: 10.1111/j.1749-6632.1980.tb47238.x. [DOI] [PubMed] [Google Scholar]
  21. Vale W., Spiess J., Rivier C., Rivier J. Characterization of a 41-residue ovine hypothalamic peptide that stimulates secretion of corticotropin and beta-endorphin. Science. 1981 Sep 18;213(4514):1394–1397. doi: 10.1126/science.6267699. [DOI] [PubMed] [Google Scholar]
  22. Weber E., Evans C. J., Barchas J. D. Predominance of the amino-terminal octapeptide fragment of dynorphin in rat brain regions. Nature. 1982 Sep 2;299(5878):77–79. doi: 10.1038/299077a0. [DOI] [PubMed] [Google Scholar]
  23. Yoshikawa K., Williams C., Sabol S. L. Rat brain preproenkephalin mRNA. cDNA cloning, primary structure, and distribution in the central nervous system. J Biol Chem. 1984 Nov 25;259(22):14301–14308. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES