Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1986 Apr;83(7):2027–2031. doi: 10.1073/pnas.83.7.2027

Elongation factor Tu.guanosine 3'-diphosphate 5'-diphosphate complex increases the fidelity of proofreading in protein biosynthesis: mechanism for reducing translational errors introduced by amino acid starvation.

D B Dix, R C Thompson
PMCID: PMC323223  PMID: 3515344

Abstract

Complexes of elongation factor Tu (EF-Tu) with guanosine 3'-diphosphate 5'-diphosphate (ppGpp) bind to ribosomes where they slow the incorporation of aminoacyl-tRNAs into protein by inhibiting both the binding of aminoacyl-tRNA.EF-Tu.GTP ternary complexes and the formation of peptide bonds. The latter action increases the time available for aminoacyl-tRNA rejection by the ribosome and, therefore, increases the effectiveness of proofreading. Synthesis of ppGpp and the formation of EF-Tu.ppGpp occur in vivo in response to amino acid starvation. Our finding, therefore, suggests an explanation for the otherwise puzzling observation that amino acid starvation has, at most, a moderate effect on the fidelity of protein synthesis in wild-type Escherichia coli. We suggest that an EF-Tu.ppGpp-induced increase in the effectiveness of proofreading buffers the overall translational fidelity of these cells against amino acid starvation-induced errors in initial selection of aminoacyl-tRNA ternary complexes.

Full text

PDF
2027

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Böck A., Faiman L. E., Neidhardt F. C. Biochemical and genetic characterization of a mutant of Escherichia coli with a temperature-sensitive valyl ribonucleic acid synthetase. J Bacteriol. 1966 Oct;92(4):1076–1082. doi: 10.1128/jb.92.4.1076-1082.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Dix D. B., Thompson R. C., Mackow E. R., Chang F. N. Effect of ppGpp on the accuracy of protein biosynthesis. Arch Biochem Biophys. 1983 May;223(1):319–324. doi: 10.1016/0003-9861(83)90597-0. [DOI] [PubMed] [Google Scholar]
  3. Eccleston J. F., Messerschmidt R. G., Yates D. W. A simple rapid mixing device. Anal Biochem. 1980 Jul 15;106(1):73–77. doi: 10.1016/0003-2697(80)90120-7. [DOI] [PubMed] [Google Scholar]
  4. Edelmann P., Gallant J. Mistranslation in E. coli. Cell. 1977 Jan;10(1):131–137. doi: 10.1016/0092-8674(77)90147-7. [DOI] [PubMed] [Google Scholar]
  5. Fersht A. R. Enzymic editing mechanisms and the genetic code. Proc R Soc Lond B Biol Sci. 1981 Aug 19;212(1189):351–379. doi: 10.1098/rspb.1981.0044. [DOI] [PubMed] [Google Scholar]
  6. Gallant J., Harada B. The control of ribonucleic acid synthesis in Escherichia coli. 3. The functional relationship between purine ribonucleoside triphosphate pool sizes and the rate of ribonucleic acid accumulation. J Biol Chem. 1969 Jun 25;244(12):3125–3132. [PubMed] [Google Scholar]
  7. Haseltine W. A., Block R., Gilbert W., Weber K. MSI and MSII made on ribosome in idling step of protein synthesis. Nature. 1972 Aug 18;238(5364):381–384. doi: 10.1038/238381a0. [DOI] [PubMed] [Google Scholar]
  8. Leberman R., Antonsson B., Giovanelli R., Guariguata R., Schumann R., Wittinghofer A. A simplified procedure for the isolation of bacterial polypeptide elongation factor EF-Tu. Anal Biochem. 1980 May 1;104(1):29–36. doi: 10.1016/0003-2697(80)90272-9. [DOI] [PubMed] [Google Scholar]
  9. Lucas-Lenard J., Tao P., Haenni A. L. Further studies on bacterial polypeptide elongation. Cold Spring Harb Symp Quant Biol. 1969;34:455–462. doi: 10.1101/sqb.1969.034.01.051. [DOI] [PubMed] [Google Scholar]
  10. Miller D. L., Weissbach H. Elongation factor Tu and the aminoacyl-tRNA-EFTu-GTP complex. Methods Enzymol. 1974;30:219–232. doi: 10.1016/0076-6879(74)30024-9. [DOI] [PubMed] [Google Scholar]
  11. O'Farrell P. H. The suppression of defective translation by ppGpp and its role in the stringent response. Cell. 1978 Jul;14(3):545–557. doi: 10.1016/0092-8674(78)90241-6. [DOI] [PubMed] [Google Scholar]
  12. Parker J., Holtz G. Control of basal-level codon misreading in Escherichia coli. Biochem Biophys Res Commun. 1984 Jun 15;121(2):487–492. doi: 10.1016/0006-291x(84)90208-0. [DOI] [PubMed] [Google Scholar]
  13. Parker J., Johnston T. C., Borgia P. T. Mistranslation in cells infected with the bacteriophage MS2: direct evidence of Lys for Asn substitution. Mol Gen Genet. 1980;180(2):275–281. doi: 10.1007/BF00425839. [DOI] [PubMed] [Google Scholar]
  14. Rojas A. M., Ehrenberg M., Andersson S. G., Kurland C. G. ppGpp inhibition of elongation factors Tu, G and Ts during polypeptide synthesis. Mol Gen Genet. 1984;197(1):36–45. doi: 10.1007/BF00327920. [DOI] [PubMed] [Google Scholar]
  15. Ruusala T., Andersson D., Ehrenberg M., Kurland C. G. Hyper-accurate ribosomes inhibit growth. EMBO J. 1984 Nov;3(11):2575–2580. doi: 10.1002/j.1460-2075.1984.tb02176.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Skoultchi A., Ono Y., Waterson J., Lengyel P. Peptide chain elongation. Cold Spring Harb Symp Quant Biol. 1969;34:437–454. doi: 10.1101/sqb.1969.034.01.050. [DOI] [PubMed] [Google Scholar]
  17. Thomposon R. C., Dix D. B. Accuracy of protein biosynthesis. A kinetic study of the reaction of poly(U)-programmed ribosomes with a leucyl-tRNA2-elongation factor Tu-GTP complex. J Biol Chem. 1982 Jun 25;257(12):6677–6682. [PubMed] [Google Scholar]
  18. Thompson R. C., Dix D. B., Eccleston J. F. Single turnover kinetic studies of guanosine triphosphate hydrolysis and peptide formation in the elongation factor Tu-dependent binding of aminoacyl-tRNA to Escherichia coli ribosomes. J Biol Chem. 1980 Dec 10;255(23):11088–11090. [PubMed] [Google Scholar]
  19. Thompson R. C., Karim A. M. The accuracy of protein biosynthesis is limited by its speed: high fidelity selection by ribosomes of aminoacyl-tRNA ternary complexes containing GTP[gamma S]. Proc Natl Acad Sci U S A. 1982 Aug;79(16):4922–4926. doi: 10.1073/pnas.79.16.4922. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Van Noort J. M., Kraal B., Bosch L. A second tRNA binding site on elongation factor Tu is induced while the factor is bound to the ribosome. Proc Natl Acad Sci U S A. 1985 May;82(10):3212–3216. doi: 10.1073/pnas.82.10.3212. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Wagner E. G., Ehrenberg M., Kurland C. G. Kinetic suppression of translational errors by (p)ppGpp. Mol Gen Genet. 1982;185(2):269–274. doi: 10.1007/BF00330797. [DOI] [PubMed] [Google Scholar]
  22. Wagner E. G., Kurland C. G. Translational accuracy enhanced in vitro by (p)ppGpp. Mol Gen Genet. 1980;180(1):139–145. doi: 10.1007/BF00267363. [DOI] [PubMed] [Google Scholar]
  23. Yegian C. D., Stent G. S. An unusual condition of leucine transfer RNA appearing during leucine starvation of Escherichia coli. J Mol Biol. 1969 Jan 14;39(1):45–58. doi: 10.1016/0022-2836(69)90332-5. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES