Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1986 Apr;83(7):2052–2055. doi: 10.1073/pnas.83.7.2052

B ring regulation of colchicine binding kinetics and fluorescence.

B Bhattacharyya, R Howard, S N Maity, A Brossi, P N Sharma, J Wolff
PMCID: PMC323228  PMID: 3457374

Abstract

Several properties of the colchicine-tubulin interaction such as association rate, reversibility, and the promotion of drug fluorescence have been related to the B ring of colchicine. The B ring itself retards the binding rate, and substitution at C-7 leads to further binding rate decreases that appear to be related to both substituent bulk and the presence of a N-acyl group. Thus, the decreasing order of binding rates is 2-methoxy-5-(2',3',4'-trimethoxyphenyl)tropone greater than deacetamidocolchicine greater than deacetylcolchicine greater than or equal to colcemid greater than colchicine greater than N-benzoyldeacetylcolchicine, etc. The apparent irreversibility of the binding seems more closely related to the presence of an N-acyl group rather than the bulk of the substituent at C-7. Substitution at C-7 also affects the tropolone fluorophore. Thus, amines (deacetylcholchicine, colcemid, or N-methylcolcemid) fluoresce poorly in the presence of tubulin, whereas substitution of the amino group with an acyl group enhances fluorescence. The presence of an N-acyl group at C-7 is essential for enhanced fluorescence. We conclude that, in addition to A- and the C-ring portion of the molecule, the B ring of colchicine is a third determinant recognized by the binding site on tubulin.

Full text

PDF
2052

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andreu J. M., Gorbunoff M. J., Lee J. C., Timasheff S. N. Interaction of tubulin with bifunctional colchicine analogues: an equilibrium study. Biochemistry. 1984 Apr 10;23(8):1742–1752. doi: 10.1021/bi00303a025. [DOI] [PubMed] [Google Scholar]
  2. Andreu J. M., Timasheff S. N. Conformational states of tubulin liganded to colchicine, tropolone methyl ether, and podophyllotoxin. Biochemistry. 1982 Dec 7;21(25):6465–6476. doi: 10.1021/bi00268a023. [DOI] [PubMed] [Google Scholar]
  3. Andreu J. M., Timasheff S. N. Interaction of tubulin with single ring analogues of colchicine. Biochemistry. 1982 Feb 2;21(3):534–543. doi: 10.1021/bi00532a019. [DOI] [PubMed] [Google Scholar]
  4. Bane S., Puett D., Macdonald T. L., Williams R. C., Jr Binding to tubulin of the colchicine analog 2-methoxy-5-(2', 3', 4'-trimethoxyphenyl)tropone. Thermodynamic and kinetic aspects. J Biol Chem. 1984 Jun 25;259(12):7391–7398. [PubMed] [Google Scholar]
  5. Bhattacharyya B., Wolff J. Immobilization-dependent fluorescence of colchicine. J Biol Chem. 1984 Oct 10;259(19):11836–11843. [PubMed] [Google Scholar]
  6. Bhattacharyya B., Wolff J. Promotion of fluorescence upon binding of colchicine to tubulin. Proc Natl Acad Sci U S A. 1974 Jul;71(7):2627–2631. doi: 10.1073/pnas.71.7.2627. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Brossi A., Sharma P. N., Atwell L., Jacobson A. E., Iorio M. A., Molinari M., Chignell C. F. Biological effects of modified colchicines. 2. Evaluation of catecholic colchicines, colchifolines, colchicide, and novel N-acyl- and N-aroyldeacetylcolchicines. J Med Chem. 1983 Oct;26(10):1365–1369. doi: 10.1021/jm00364a006. [DOI] [PubMed] [Google Scholar]
  8. Choudhury G. G., Banerjee A., Bhattacharyya B., Biswas B. B. Interaction of colchicine analogues with purified tubulin. FEBS Lett. 1983 Sep 5;161(1):55–59. doi: 10.1016/0014-5793(83)80729-7. [DOI] [PubMed] [Google Scholar]
  9. Clark J. I., Garland D. Fluorescein colchicine. Synthesis, purification, and biological activity. J Cell Biol. 1978 Mar;76(3):619–627. doi: 10.1083/jcb.76.3.619. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Cortese F., Bhattacharyya B., Wolff J. Podophyllotoxin as a probe for the colchicine binding site of tubulin. J Biol Chem. 1977 Feb 25;252(4):1134–1140. [PubMed] [Google Scholar]
  11. Deinum J., Lincoln P., Larsson T., Lagercrantz C., Erkell L. J. Synthesis and binding to tubulin of an allocolchicine spin probe. Acta Chem Scand B. 1981;35(10):677–681. doi: 10.3891/acta.chem.scand.35b-0677. [DOI] [PubMed] [Google Scholar]
  12. Detrich H. W., 3rd, Williams R. C., Jr, Macdonald T. L., Wilson L., Puett D. Changes in the circular dichroic spectrum of colchicine associated with its binding to tubulin. Biochemistry. 1981 Oct 13;20(21):5999–6005. doi: 10.1021/bi00524a012. [DOI] [PubMed] [Google Scholar]
  13. Fitzgerald T. J. Molecular features of colchicine associated with antimitotic activity and inhibition of tubulin polymerization. Biochem Pharmacol. 1976 Jun 15;25(12):1383–1387. doi: 10.1016/0006-2952(76)90108-8. [DOI] [PubMed] [Google Scholar]
  14. Garland D. L. Kinetics and mechanism of colchicine binding to tubulin: evidence for ligand-induced conformational change. Biochemistry. 1978 Oct 3;17(20):4266–4272. doi: 10.1021/bi00613a024. [DOI] [PubMed] [Google Scholar]
  15. Ide G., Engelborghs Y. Fluorescence quenching and induced dissociation of the tubulin-colchicine complex by iodide. J Biol Chem. 1981 Nov 25;256(22):11684–11687. [PubMed] [Google Scholar]
  16. Lambeir A., Engelborghs Y. A fluorescence stopped flow study of colchicine binding to tubulin. J Biol Chem. 1981 Apr 10;256(7):3279–3282. [PubMed] [Google Scholar]
  17. Margulis T. N. Structure of the mitotic spindle inhibitor colcemid. N-desacetyl-N-methylcolchicine. J Am Chem Soc. 1974 Feb 6;96(3):899–902. doi: 10.1021/ja00810a041. [DOI] [PubMed] [Google Scholar]
  18. Ray K., Bhattacharyya B., Biswas B. B. Anion-induced increases in the affinity of colcemid binding to tubulin. Eur J Biochem. 1984 Aug 1;142(3):577–581. doi: 10.1111/j.1432-1033.1984.tb08325.x. [DOI] [PubMed] [Google Scholar]
  19. Ray K., Bhattacharyya B., Biswas B. B. Role of B-ring of colchicine in its binding to tubulin. J Biol Chem. 1981 Jun 25;256(12):6241–6244. [PubMed] [Google Scholar]
  20. Sloboda R. D., Rosenbaum J. L. Purification and assay of microtubule-associated proteins (MAPs). Methods Enzymol. 1982;85(Pt B):409–416. doi: 10.1016/0076-6879(82)85041-6. [DOI] [PubMed] [Google Scholar]
  21. Williams J. A., Wolff J. Colchicine-binding protein and the secretion of thyroid hormone. J Cell Biol. 1972 Jul;54(1):157–165. doi: 10.1083/jcb.54.1.157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Williams R. F., Mumford C. L., Williams G. A., Floyd L. J., Aivaliotis M. J., Martinez R. A., Robinson A. K., Barnes L. D. A photoaffinity derivative of colchicine: 6'-(4'-azido-2'-nitrophenylamino)hexanoyldeacetylcolchicine. Photolabeling and location of the colchicine-binding site on the alpha-subunit of tubulin. J Biol Chem. 1985 Nov 5;260(25):13794–13802. [PubMed] [Google Scholar]
  23. Wilson L. Microtubules as drug receptors: pharmacological properties of microtubule protein. Ann N Y Acad Sci. 1975 Jun 30;253:213–231. doi: 10.1111/j.1749-6632.1975.tb19201.x. [DOI] [PubMed] [Google Scholar]
  24. Zweig M. H., Chignell C. F. Interaction of some colchicine analogs, vinblastine and podophyllotoxin with rat brain microtubule protein. Biochem Pharmacol. 1973 Sep 1;22(17):2141–2150. doi: 10.1016/0006-2952(73)90113-5. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES