Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1986 Apr;83(7):2263–2266. doi: 10.1073/pnas.83.7.2263

Changes in insulin and transferrin requirements of pure brain neuronal cultures during embryonic development.

Y Aizenman, M E Weichsel Jr, J de Vellis
PMCID: PMC323272  PMID: 3515348

Abstract

A pure neuronal culture grown in a defined serum-free environment has been developed and characterized. Insulin was the only hormone found to enhance the growth of neurons obtained from embryonic chicken brains during the early proliferative stage, a time when many neurons survived without the addition of any growth factors to the culture. With increasing embryonic age, there was an increase in the number of neurons requiring transferrin. By the time neurons reached a postmitotic state in older brains, they were completely dependent on both insulin and transferrin for survival and growth. Because this culture is free of glial cells and serum, it provides an effective basis for investigating molecular mechanisms underlying neuronal development.

Full text

PDF
2263

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barakat I., Sensenbrenner M., Labourdette G. Stimulation of chick neuroblast proliferation in culture by brain extracts. J Neurosci Res. 1982;8(2-3):303–314. doi: 10.1002/jnr.490080220. [DOI] [PubMed] [Google Scholar]
  2. Barakat I., Wittendorp-Rechenmann W., Rechenmann R. V., Sensenbrenner M. Influence of meningeal cells on the proliferation of neuroblasts in culture. Dev Neurosci. 1981;4(5):363–372. doi: 10.1159/000112776. [DOI] [PubMed] [Google Scholar]
  3. Bottenstein J. E., Sato G. H. Growth of a rat neuroblastoma cell line in serum-free supplemented medium. Proc Natl Acad Sci U S A. 1979 Jan;76(1):514–517. doi: 10.1073/pnas.76.1.514. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Breen G. A., de Vellis J. Regulation of glycerol phosphate dehydrogenase by hydrocortisone in dissociated rat cerebral cell cultures. Dev Biol. 1974 Dec;41(2):255–266. doi: 10.1016/0012-1606(74)90304-2. [DOI] [PubMed] [Google Scholar]
  5. Choi B. H., Kim R. C. Expression of glial fibrillary acidic protein in immature oligodendroglia. Science. 1984 Jan 27;223(4634):407–409. doi: 10.1126/science.6197755. [DOI] [PubMed] [Google Scholar]
  6. FUJITA S. ANALYSIS OF NEURON DIFFERENTIATION IN THE CENTRAL NERVOUS SYSTEM BY TRITIATED THYMIDINE AUTORADIOGRAPHY. J Comp Neurol. 1964 Jun;122:311–327. doi: 10.1002/cne.901220303. [DOI] [PubMed] [Google Scholar]
  7. Goldstein M. E., Sternberger N. H., Sternberger L. A. Developmental expression of neurotypy revealed by immunocytochemistry with monoclonal antibodies. J Neuroimmunol. 1982 Nov;3(3):203–217. doi: 10.1016/0165-5728(82)90023-6. [DOI] [PubMed] [Google Scholar]
  8. Haidar M. A., Dube S., Sarkar P. K. Thyroid hormone receptors of developing chick brain are predominantly in the neurons. Biochem Biophys Res Commun. 1983 Apr 15;112(1):221–227. doi: 10.1016/0006-291x(83)91819-3. [DOI] [PubMed] [Google Scholar]
  9. Hsu S. M., Raine L., Fanger H. Use of avidin-biotin-peroxidase complex (ABC) in immunoperoxidase techniques: a comparison between ABC and unlabeled antibody (PAP) procedures. J Histochem Cytochem. 1981 Apr;29(4):577–580. doi: 10.1177/29.4.6166661. [DOI] [PubMed] [Google Scholar]
  10. Levin M. J., Tuil D., Uzan G., Dreyfus J. C., Kahn A. Expression of the transferrin gene during development of non-hepatic tissues: high level of transferrin mRNA in fetal muscle and adult brain. Biochem Biophys Res Commun. 1984 Jul 18;122(1):212–217. doi: 10.1016/0006-291x(84)90461-3. [DOI] [PubMed] [Google Scholar]
  11. Markelonis G. J., Oh T. H., Park L. P., Cha C. Y., Sofia C. A., Kim J. W., Azari P. Synthesis of the transferrin receptor by cultures of embryonic chicken spinal neurons. J Cell Biol. 1985 Jan;100(1):8–17. doi: 10.1083/jcb.100.1.8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Martinez-Hernandez A., Bell K. P., Norenberg M. D. Glutamine synthetase: glial localization in brain. Science. 1977 Mar 25;195(4284):1356–1358. doi: 10.1126/science.14400. [DOI] [PubMed] [Google Scholar]
  13. McCarthy K. D., de Vellis J. Preparation of separate astroglial and oligodendroglial cell cultures from rat cerebral tissue. J Cell Biol. 1980 Jun;85(3):890–902. doi: 10.1083/jcb.85.3.890. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Morrison R. S., de Vellis J. Growth of purified astrocytes in a chemically defined medium. Proc Natl Acad Sci U S A. 1981 Nov;78(11):7205–7209. doi: 10.1073/pnas.78.11.7205. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Pishak M. R., Phillips A. T. Glucocorticoid stimulation of glutamine synthetase production in cultured rat glioma cells. J Neurochem. 1980 Apr;34(4):866–872. doi: 10.1111/j.1471-4159.1980.tb09659.x. [DOI] [PubMed] [Google Scholar]
  16. Puro D. G., Agardh E. Insulin-mediated regulation of neuronal maturation. Science. 1984 Sep 14;225(4667):1170–1172. doi: 10.1126/science.6089343. [DOI] [PubMed] [Google Scholar]
  17. Rotman B., Papermaster B. W. Membrane properties of living mammalian cells as studied by enzymatic hydrolysis of fluorogenic esters. Proc Natl Acad Sci U S A. 1966 Jan;55(1):134–141. doi: 10.1073/pnas.55.1.134. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Sensenbrenner M., Maderspach K., Latzkovits L., Jaros G. G. Neuronal cells from chick embryo cerebral hemispheres cultivated on polylysine-coated surfaces. Dev Neurosci. 1978;1(2):90–101. doi: 10.1159/000112560. [DOI] [PubMed] [Google Scholar]
  19. Skaper S. D., Adler R., Varon S. A procedure for purifying neuron-like cells in cultures from central nervous tissue with a defined medium. Dev Neurosci. 1979;2(5):233–237. doi: 10.1159/000112485. [DOI] [PubMed] [Google Scholar]
  20. Toran-Allerand C. D. Coexistence of alpha-fetoprotein, albumin and transferrin immunoreactivity in neurones of the developing mouse brain. Nature. 1980 Aug 14;286(5774):733–735. doi: 10.1038/286733a0. [DOI] [PubMed] [Google Scholar]
  21. Tsai H. M., Garber B. B., Larramendi L. M. 3H-thymidine autoradiographic analysis of telencephalic histogenesis in the chick embryo: I. Neuronal birthdates of telencephalic compartments in situ. J Comp Neurol. 1981 May 10;198(2):275–292. doi: 10.1002/cne.901980207. [DOI] [PubMed] [Google Scholar]
  22. Tsai H. M., Garber B. B., Larramendi L. M. 3H-thymidine autoradiographic analysis of telencephalic histogenesis in the chick embryo: II. Dynamics of neuronal migration, displacement, and aggregation. J Comp Neurol. 1981 May 10;198(2):293–306. doi: 10.1002/cne.901980208. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES