Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1986 Apr;83(7):2276–2280. doi: 10.1073/pnas.83.7.2276

Sensitivities of rat kidney thick ascending limbs and collecting ducts to vasopressin in vivo.

J M Elalouf, A Di Stefano, C de Rouffignac
PMCID: PMC323275  PMID: 3457386

Abstract

Clearance experiments were performed to characterize the sensitivity to vasopressin of the thick ascending limbs and collecting duct system of the rat kidney. The response of the thick ascending limbs was evaluated by measuring the Mg2+ excretion rate in the urine, since the [arginine-8] vasopressin-mediated effects on Mg2+ excretion are the direct result of a stimulation of Mg2+ reabsorption in this nephron segment, and the response of the collecting ducts was evaluated by changes in urine flow. To avoid the effects of parathyroid hormone, glucagon, and calcitonin, which stimulate Mg2+ reabsorption in the thick ascending limb and distal tubule, and of calcitonin, which increases the permeability of the cortical collecting ducts to water, experiments were performed on Brattleboro D. I. rats (with hereditary diabetes insipidus, due to a lack of [Arg8]vasopressin) acutely deprived of endogenous parathyroid hormone, calcitonin, and glucagon. Vasopressin infused at rates up to 5 pg/min did not reduce the Mg2+ fractional excretion rate, whereas at 5 pg/min water excretion was decreased by 50%. The half-maximal reduction of Mg2+ excretion occurred at vasopressin infusion rates 4-6 times higher than those necessary to diminish the water excretion rate to the same extent. We conclude that in vivo, two segments involved in the production of concentrated urine have different sensitivities to vasopressin and that this difference in sensitivity is very similar for the biological response in vivo and the adenylate cyclase activation in vitro. We suggest that both the magnitude and the nature of the effects of [Arg8]vasopressin on the kidney may vary according to the required antidiuretic response.

Full text

PDF
2276

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Atherton J. C., Green R., Thomas S. Influence of lysine-vasopressin dosage on the time course of changes in renal tissue and urinary composition in the conscious rat. J Physiol. 1971 Mar;213(2):291–309. doi: 10.1113/jphysiol.1971.sp009383. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bailly C., Roinel N., Amiel C. PTH-like glucagon stimulation of Ca and Mg reabsorption in Henle's loop of the rat. Am J Physiol. 1984 Feb;246(2 Pt 2):F205–F212. doi: 10.1152/ajprenal.1984.246.2.F205. [DOI] [PubMed] [Google Scholar]
  3. Bailly C., Roinel N., Amiel C. Stimulation by glucagon and PTH of Ca and Mg reabsorption in the superficial distal tubule of the rat kidney. Pflugers Arch. 1985 Jan;403(1):28–34. doi: 10.1007/BF00583277. [DOI] [PubMed] [Google Scholar]
  4. Bouby N., Trinh-Trang-Tan M. M., Bankir L. Stimulation of tubular reabsorption of magnesium and calcium by antidiuretic hormone in conscious rats. Study in Brattleboro rats with hereditary hypothalamic diabetes insipidus. Pflugers Arch. 1984 Dec;402(4):458–464. doi: 10.1007/BF00583948. [DOI] [PubMed] [Google Scholar]
  5. Dunn F. L., Brennan T. J., Nelson A. E., Robertson G. L. The role of blood osmolality and volume in regulating vasopressin secretion in the rat. J Clin Invest. 1973 Dec;52(12):3212–3219. doi: 10.1172/JCI107521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Elalouf J. M., Roinel N., de Rouffignac C. ADH-like effects of calcitonin on electrolyte transport by Henle's loop of rat kidney. Am J Physiol. 1984 Feb;246(2 Pt 2):F213–F220. doi: 10.1152/ajprenal.1984.246.2.F213. [DOI] [PubMed] [Google Scholar]
  7. Elalouf J. M., Roinel N., de Rouffignac C. Effects of antidiuretic hormone on electrolyte reabsorption and secretion in distal tubules of rat kidney. Pflugers Arch. 1984 Jun;401(2):167–173. doi: 10.1007/BF00583877. [DOI] [PubMed] [Google Scholar]
  8. Elalouf J. M., Roinel N., de Rouffignac C. Stimulation by human calcitonin of electrolyte transport in distal tubules of rat kidney. Pflugers Arch. 1983 Oct;399(2):111–118. doi: 10.1007/BF00663905. [DOI] [PubMed] [Google Scholar]
  9. Gellai M., Silverstein J. H., Hwang J. C., LaRochelle F. T., Jr, Valtin H. Influence of vasopressin on renal hemodynamics in conscious Brattleboro rats. Am J Physiol. 1984 Jun;246(6 Pt 2):F819–F827. doi: 10.1152/ajprenal.1984.246.6.F819. [DOI] [PubMed] [Google Scholar]
  10. Grantham J. J., Burg M. B. Effect of vasopressin and cyclic AMP on permeability of isolated collecting tubules. Am J Physiol. 1966 Jul;211(1):255–259. doi: 10.1152/ajplegacy.1966.211.1.255. [DOI] [PubMed] [Google Scholar]
  11. Hall D. A., Varney D. M. Effect of vasopressin on electrical potential difference and chloride transport in mouse medullary thick ascending limb of Henle's loop. J Clin Invest. 1980 Oct;66(4):792–802. doi: 10.1172/JCI109917. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hebert S. C., Culpepper R. M., Andreoli T. E. NaCl transport in mouse medullary thick ascending limbs. I. Functional nephron heterogeneity and ADH-stimulated NaCl cotransport. Am J Physiol. 1981 Oct;241(4):F412–F431. doi: 10.1152/ajprenal.1981.241.4.F412. [DOI] [PubMed] [Google Scholar]
  13. Imbert-Teboul M., Chabardès D., Montégut M., Clique A., Morel F. Vasopressin-dependent adenylate cyclase activities in the rat kidney medulla: evidence for two separate sites of action. Endocrinology. 1978 Apr;102(4):1254–1261. doi: 10.1210/endo-102-4-1254. [DOI] [PubMed] [Google Scholar]
  14. Kriz W., Bankir L. ADH-induced changes in the epithelium of the thick ascending limb in Brattleboro rats with hereditary hypothalamic diabetes insipidus. Ann N Y Acad Sci. 1982;394:424–434. doi: 10.1111/j.1749-6632.1982.tb37454.x. [DOI] [PubMed] [Google Scholar]
  15. Morel F. Sites of hormone action in the mammalian nephron. Am J Physiol. 1981 Mar;240(3):F159–F164. doi: 10.1152/ajprenal.1981.240.3.F159. [DOI] [PubMed] [Google Scholar]
  16. Quamme G. A., Dirks J. H. Intraluminal and contraluminal magnesium on magnesium and calcium transfer in the rat nephron. Am J Physiol. 1980 Mar;238(3):F187–F198. doi: 10.1152/ajprenal.1980.238.3.F187. [DOI] [PubMed] [Google Scholar]
  17. Sasaki S., Imai M. Effects of vasopressin on water and NaCl transport across the in vitro perfused medullary thick ascending limb of Henle's loop of mouse, rat, and rabbit kidneys. Pflugers Arch. 1980 Feb;383(3):215–221. doi: 10.1007/BF00587521. [DOI] [PubMed] [Google Scholar]
  18. de Rouffignac C., Corman B., Roinel N. Stimulation by antidiuretic hormone of electrolyte tubular reabsorption in rat kidney. Am J Physiol. 1983 Feb;244(2):F156–F164. doi: 10.1152/ajprenal.1983.244.2.F156. [DOI] [PubMed] [Google Scholar]
  19. de Rouffignac C., Elalouf J. M. Effects of calcitonin on the renal concentrating mechanism. Am J Physiol. 1983 Oct;245(4):F506–F511. doi: 10.1152/ajprenal.1983.245.4.F506. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES