Abstract
The frequency of clonable 6-thioguanine-resistant (6-TGr) splenic T cells increased moderately with age in female BALB/c mice ranging in age from 3 to 32 months; however, the correlation between the frequency of clonable 6-TGr cells and age was weak. Those clonable 6-TGr T cells were deficient in hypoxanthine/guanine phosphoribosyltransferase (HGPRT) activity and sensitive to hypoxanthine/aminopterin/thymidine medium, as in the case of HGPRT-deficient L5178Y mouse lymphoma cells. When splenic T cells of individual aging mice were assessed simultaneously for the frequency of clonable 6-TGr T cells and for their ability to produce interleukin 2 or to proliferate in response to mitogenic stimulation, an inverse correlation was observed. These results indicate that the frequency of 6-TGr T cells is more closely related to physiologic age than chronologic age. This would mean that the frequency could be used as an index of physiologic age and that the T cells could serve as a cellular model relating gene alterations to physiologic age.
Full text
PDF



Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Albertini R. J., Castle K. L., Borcherding W. R. T-cell cloning to detect the mutant 6-thioguanine-resistant lymphocytes present in human peripheral blood. Proc Natl Acad Sci U S A. 1982 Nov;79(21):6617–6621. doi: 10.1073/pnas.79.21.6617. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Albertini R. J., DeMars R. Somatic cell mutation. Detection and quantification of x-ray-induced mutation in cultured, diploid human fibroblasts. Mutat Res. 1973 May;18(2):199–224. doi: 10.1016/0027-5107(73)90037-7. [DOI] [PubMed] [Google Scholar]
- Albertini R. J., O'Neill J. P., Nicklas J. A., Heintz N. H., Kelleher P. C. Alterations of the hprt gene in human in vivo-derived 6-thioguanine-resistant T lymphocytes. Nature. 1985 Jul 25;316(6026):369–371. doi: 10.1038/316369a0. [DOI] [PubMed] [Google Scholar]
- Albertini R. J. Somatic gene mutations in vivo as indicated by the 6-thioguanine-resistant T-lymphocytes in human blood. Mutat Res. 1985 Jun-Jul;150(1-2):411–422. doi: 10.1016/0027-5107(85)90138-1. [DOI] [PubMed] [Google Scholar]
- Andersson J., Grönvik K. O., Larsson E. L., Coutinho A. Studies on T lymphocyte activation. I. Requirements for the mitogen-dependent production of T cell growth factors. Eur J Immunol. 1979 Aug;9(8):581–587. doi: 10.1002/eji.1830090802. [DOI] [PubMed] [Google Scholar]
- Chang M. P., Makinodan T., Peterson W. J., Strehler B. L. Role of T cells and adherent cells in age-related decline in murine interleukin 2 production. J Immunol. 1982 Dec;129(6):2426–2430. [PubMed] [Google Scholar]
- DeMars R., Held K. R. The spontaneous azaguanine-resistant mutants of diploid human fibroblasts. Humangenetik. 1972;16(1):87–110. doi: 10.1007/BF00393992. [DOI] [PubMed] [Google Scholar]
- Gillis S., Ferm M. M., Ou W., Smith K. A. T cell growth factor: parameters of production and a quantitative microassay for activity. J Immunol. 1978 Jun;120(6):2027–2032. [PubMed] [Google Scholar]
- Goldstein S., Shmookler Reis R. J. Genetic modifications during cellular aging. Mol Cell Biochem. 1984 Sep;64(1):15–30. doi: 10.1007/BF00420924. [DOI] [PubMed] [Google Scholar]
- Greiner D. L., Goldschneider I., Barton R. W. Identification of thymocyte progenitors in hemopoietic tissues of the rat. II. Enrichment of functional prothymocytes on the fluorescence-activated cell sorter. J Exp Med. 1982 Nov 1;156(5):1448–1460. doi: 10.1084/jem.156.5.1448. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hart R. W., Setlow R. B. Correlation between deoxyribonucleic acid excision-repair and life-span in a number of mammalian species. Proc Natl Acad Sci U S A. 1974 Jun;71(6):2169–2173. doi: 10.1073/pnas.71.6.2169. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Horn P. L., Turker M. S., Ogburn C. E., Disteche C. M., Martin G. M. A cloning assay for 6-thioguanine resistance provides evidence against certain somatic mutational theories of aging. J Cell Physiol. 1984 Nov;121(2):309–315. doi: 10.1002/jcp.1041210207. [DOI] [PubMed] [Google Scholar]
- JACOBS P. A., COURT BROWN W. M., DOLL R. Distribution of human chromosome counts in relation to age. Nature. 1961 Sep 16;191:1178–1180. doi: 10.1038/1911178a0. [DOI] [PubMed] [Google Scholar]
- Julius M. H., Simpson E., Herzenberg L. A. A rapid method for the isolation of functional thymus-derived murine lymphocytes. Eur J Immunol. 1973 Oct;3(10):645–649. doi: 10.1002/eji.1830031011. [DOI] [PubMed] [Google Scholar]
- Norman A., Cochran S., Bass D., Roe D. Effects of age, sex and diagnostic X-rays on chromosome damage. Int J Radiat Biol Relat Stud Phys Chem Med. 1984 Sep;46(3):317–321. doi: 10.1080/09553008414551451. [DOI] [PubMed] [Google Scholar]
- Price G. B., Makinodan T. Immunologic deficiencies in senescence. I. Characterization of intrinsic deficiencies. J Immunol. 1972 Feb;108(2):403–412. [PubMed] [Google Scholar]
- Scollay R., Shortman K. Thymocyte subpopulations: an experimental review, including flow cytometric cross-correlations between the major murine thymocyte markers. Thymus. 1983 Sep;5(5-6):245–295. [PubMed] [Google Scholar]
- Siminovitch L. On the nature of hereditable variation in cultured somatic cells. Cell. 1976 Jan;7(1):1–11. doi: 10.1016/0092-8674(76)90249-x. [DOI] [PubMed] [Google Scholar]
- Stutman O. Intrathymic and extrathymic T cell maturation. Immunol Rev. 1978;42:138–184. doi: 10.1111/j.1600-065x.1978.tb00261.x. [DOI] [PubMed] [Google Scholar]
- Trainor K. J., Wigmore D. J., Chrysostomou A., Dempsey J. L., Seshadri R., Morley A. A. Mutation frequency in human lymphocytes increases with age. Mech Ageing Dev. 1984 Sep;27(1):83–86. doi: 10.1016/0047-6374(84)90084-8. [DOI] [PubMed] [Google Scholar]
- Turner D. R., Morley A. A., Haliandros M., Kutlaca R., Sanderson B. J. In vivo somatic mutations in human lymphocytes frequently result from major gene alterations. Nature. 1985 May 23;315(6017):343–345. doi: 10.1038/315343a0. [DOI] [PubMed] [Google Scholar]
- Vijayalaxmi, Evans H. J. Measurement of spontaneous and X-irradiation-induced 6-thioguanine-resistant human blood lymphocytes using a T-cell cloning technique. Mutat Res. 1984 Jan;125(1):87–94. doi: 10.1016/0027-5107(84)90035-6. [DOI] [PubMed] [Google Scholar]
- Yamagishi H., Kunisada T., Takeda T. Amplification of extrachromosomal small circular DNAs in a murine model of accelerated senescence. A brief note. Mech Ageing Dev. 1985 Jan;29(1):101–103. doi: 10.1016/0047-6374(85)90051-x. [DOI] [PubMed] [Google Scholar]
