Abstract
The transport function and orientation of the reconstituted human erythrocyte glucose transporter was studied with liposomes made with bovine brain lipid or Escherichia coli lipid. Reconstitution was achieved by a simple octyl glucoside dilution method. The reconstituted transporters with either lipid showed identical counterflow transport activity, the same response to various inhibitors, and characteristic cytochalasin B (CB) labeling. Functional location and purification of the glucose transporter was performed by using gel-permeation high-performance liquid chromatography with octyl glucoside-containing buffer. The reconstituted transport activity was associated only with band 4.5 protein (preactin) and not with band 3 protein. Both CB binding and transport function of the reconstituted transporters were resistant to trypsin but susceptible to chymotrypsin digestion. However, both trypsin and chymotrypsin treatment of unsealed ghosts completely eliminated the CB labeling and transport function of the glucose transporter. In our reconstitution system the glucose transporters maintained a normal asymmetrical (right-side-out) orientation and good transport function. A specific monoclonal antibody against the glucose transporter inhibited CB labeling of the transporters on unsealed ghosts. This was not found with the reconstituted system; however, after freeze-thawing there was a significant inhibition of CB binding by the antibody. These findings suggest that the CB-binding site of the reconstituted transporter is on the inner side of the proteoliposomes.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Allard W. J., Lienhard G. E. Monoclonal antibodies to the glucose transporter from human erythrocytes. Identification of the transporter as a Mr = 55,000 protein. J Biol Chem. 1985 Jul 25;260(15):8668–8675. [PubMed] [Google Scholar]
- Baldassare J. J. Enhancement of the reconstituted glucose transport activity from LM cells by phosphatidylethanolamine. J Biol Chem. 1983 Sep 10;258(17):10223–10226. [PubMed] [Google Scholar]
- Batley M., Packer N. H., Redmond J. W. Molecular analysis of the phospholipids of Escherichia coli k12. Biochim Biophys Acta. 1982 Mar 12;710(3):400–405. doi: 10.1016/0005-2760(82)90123-0. [DOI] [PubMed] [Google Scholar]
- Bayer M. E., Remsen C. C. Structure of Escherichia coli after freeze-etching. J Bacteriol. 1970 Jan;101(1):304–313. doi: 10.1128/jb.101.1.304-313.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bhat M. K., Iyengar R., Abramowitz J., Bordelon-Riser M. E., Birnbaumer L. Naturally soluble component(s) that confer(s) guanine nucleotide and fluoride sensitivity to adenylate cyclase. Proc Natl Acad Sci U S A. 1980 Jul;77(7):3836–3840. doi: 10.1073/pnas.77.7.3836. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cairns M. T., Elliot D. A., Scudder P. R., Baldwin S. A. Proteolytic and chemical dissection of the human erythrocyte glucose transporter. Biochem J. 1984 Jul 1;221(1):179–188. doi: 10.1042/bj2210179. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Carruthers A., Melchior D. L. A rapid method of reconstituting human erythrocyte sugar transport proteins. Biochemistry. 1984 Jun 5;23(12):2712–2718. doi: 10.1021/bi00307a027. [DOI] [PubMed] [Google Scholar]
- Carter-Su C., Pessin J. E., Mora R., Gitomer W., Czech M. P. Photoaffinity labeling of the human erythrocyte D-glucose transporter. J Biol Chem. 1982 May 25;257(10):5419–5425. [PubMed] [Google Scholar]
- Gingrich R. D., Wouters M., Bramwell M. E., Harris H. Immunological delineation in normal and malignant cells of a membrane protein involved in glucose transport. I. Preparation and properties of the antibody. J Cell Sci. 1981 Dec;52:99–120. doi: 10.1242/jcs.52.1.99. [DOI] [PubMed] [Google Scholar]
- Goldin S. M., Rhoden V. Reconstitution and "transport specificity fractionation" of the human erythrocyte glucose transport system. A new approach for identification and isolation of membrane transport proteins. J Biol Chem. 1978 Apr 25;253(8):2575–2583. [PubMed] [Google Scholar]
- Hah J. S., Hui S. W., Jung C. Y. Effects of physical states of phospholipids on the incorporation and cytochalasin B binding activity of human erythrocyte membrane proteins in reconstituted vesicles. Biochemistry. 1983 Sep 27;22(20):4763–4769. doi: 10.1021/bi00289a023. [DOI] [PubMed] [Google Scholar]
- Jones M. N., Nickson J. K. Monosaccharide transport proteins of the human erythrocyte membrane. Biochim Biophys Acta. 1981 Jun 16;650(1):1–20. doi: 10.1016/0304-4157(81)90006-x. [DOI] [PubMed] [Google Scholar]
- Kasahara M., Hinkle P. C. Reconstitution and purification of the D-glucose transporter from human erythrocytes. J Biol Chem. 1977 Oct 25;252(20):7384–7390. [PubMed] [Google Scholar]
- Kurokawa T., Tillotson L. G., Chen C. C., Isselbacher K. J. Solubilization and separation of the human erythrocyte D-glucose transporter covalently and noncovalently photoaffinity-labeled with [3H]cytochalasin B. Proc Natl Acad Sci U S A. 1986 Jan;83(2):479–482. doi: 10.1073/pnas.83.2.479. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mueckler M., Caruso C., Baldwin S. A., Panico M., Blench I., Morris H. R., Allard W. J., Lienhard G. E., Lodish H. F. Sequence and structure of a human glucose transporter. Science. 1985 Sep 6;229(4717):941–945. doi: 10.1126/science.3839598. [DOI] [PubMed] [Google Scholar]
- Newman M. J., Wilson T. H. Solubilization and reconstitution of the lactose transport system from Escherichia coli. J Biol Chem. 1980 Nov 25;255(22):10583–10586. [PubMed] [Google Scholar]
- Salter D. W., Baldwin S. A., Lienhard G. E., Weber M. J. Proteins antigenically related to the human erythrocyte glucose transporter in normal and Rous sarcoma virus-transformed chicken embryo fibroblasts. Proc Natl Acad Sci U S A. 1982 Mar;79(5):1540–1544. doi: 10.1073/pnas.79.5.1540. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schaffner W., Weissmann C. A rapid, sensitive, and specific method for the determination of protein in dilute solution. Anal Biochem. 1973 Dec;56(2):502–514. doi: 10.1016/0003-2697(73)90217-0. [DOI] [PubMed] [Google Scholar]
- Shanahan M. F. Cytochalasin B. A natural photoaffinity ligand for labeling the human erythrocyte glucose transporter. J Biol Chem. 1982 Jul 10;257(13):7290–7293. [PubMed] [Google Scholar]
- Shanahan M. F., D'Artel-Ellis J. Orientation of the glucose transporter in the human erythrocyte membrane. Investigation by in situ proteolytic dissection. J Biol Chem. 1984 Nov 25;259(22):13878–13884. [PubMed] [Google Scholar]
- Shelton R. L., Jr, Langdon R. G. Reconstitution of glucose transport using human erythrocyte band 3. Biochim Biophys Acta. 1983 Aug 24;733(1):25–33. doi: 10.1016/0005-2736(83)90087-1. [DOI] [PubMed] [Google Scholar]
- Sogin D. C., Hinkle P. C. Immunological identification of the human erythrocyte glucose transporter. Proc Natl Acad Sci U S A. 1980 Oct;77(10):5725–5729. doi: 10.1073/pnas.77.10.5725. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Steck T. L., Kant J. A. Preparation of impermeable ghosts and inside-out vesicles from human erythrocyte membranes. Methods Enzymol. 1974;31:172–180. doi: 10.1016/0076-6879(74)31019-1. [DOI] [PubMed] [Google Scholar]
- Taverna R. D., Langdon R. G. Reversible association of cytochalasin B with the human erythrocyte membrane. Inhibition of glucose transport and the stoichiometry of cytochalasin binding. Biochim Biophys Acta. 1973 Oct 11;323(2):207–219. doi: 10.1016/0005-2736(73)90145-4. [DOI] [PubMed] [Google Scholar]
