Abstract
S-(1,2-Dichlorovinyl)-L-homocysteine (DCVHcy), an analogue of the nephrotoxin S-(1,2-dichlorovinyl)-L-cysteine (DCVCys), is a much more potent nephrotoxin than DCVCys both in vivo and in isolated renal proximal tubular cells. S-(1,2-Dichlorovinyl)-DL-alpha-methylhomocysteine, at equimolar doses relative to DCVHcy, is not nephrotoxic. Agents that inhibit pyridoxal phosphate-dependent enzymes (DL-propargylglycine and aminooxyacetic acid) or renal organic anion transport (probenecid) protect against DCVHcy-induced nephrotoxicity. With kidney cytosol, DCVHcy or the analogue S-(2-benzothiazolyl)-L-homocysteine (BTHcy) is not metabolized to 2-ketobutyrate, but 2-mercaptobenzothiazole is a metabolite of BTHcy and the Vmax for its formation is enhanced by addition of 2-ketobutyrate. These results are consistent with a bioactivation mechanism for DCVHcy that involves enzymatic deamination followed by a nonenzymatic beta-elimination to produce two reactive intermediates--i.e., S-(1,2-dichlorovinyl)thiol and 2-keto-3-butenoic acid. The Km values for the N-acetylation of DCVCys and DCVHcy by kidney microsomal N-acetyltransferase are similar, but the rate of DCVCys N-acetylation is 4-fold greater than the rate measured with DCVHcy as the substrate. Thus, the remarkable nephrotoxic potency of DCVHcy compared with DCVCys may be attributable to intrarenal differences in activation and detoxication.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abeles R. H., Walsh C. T. Acetylenic enzyme inactivators. Inactivation of gamma-cystathionase, in vitro and in vivo, by propargylglycine. J Am Chem Soc. 1973 Sep 5;95(18):6124–6125. doi: 10.1021/ja00799a053. [DOI] [PubMed] [Google Scholar]
- Alston T. A., Bright H. J. Conversion of trifluoromethionine to a cross-linking agent by gamma-cystathionase. Biochem Pharmacol. 1983 Mar 1;32(5):947–950. doi: 10.1016/0006-2952(83)90608-1. [DOI] [PubMed] [Google Scholar]
- Anderson P. M., Schultze M. O. Cleavage of S-(1,2-dichlorovinyl)-L-cysteine by an enzyme of bovine origin. Arch Biochem Biophys. 1965 Sep;111(3):593–602. doi: 10.1016/0003-9861(65)90240-7. [DOI] [PubMed] [Google Scholar]
- Awata S., Nakayama K., Kodama H. Effect of D,L-propargylglycine on cystathionine metabolism in rats. Biochem Int. 1984 Jan;8(1):171–179. [PubMed] [Google Scholar]
- Beeler T., Churchich J. E. Reactivity of the phosphopyridoxal groups of cystathionase. J Biol Chem. 1976 Sep 10;251(17):5267–5271. [PubMed] [Google Scholar]
- Cooper A. J., Haber M. T., Meister A. On the chemistry and biochemistry of 3-mercaptopyruvic acid, the alpha-keto acid analog of cysteine. J Biol Chem. 1982 Jan 25;257(2):816–826. [PubMed] [Google Scholar]
- Cooper A. J., Meister A. Enzymatic oxidation of L-homocysteine. Arch Biochem Biophys. 1985 Jun;239(2):556–566. doi: 10.1016/0003-9861(85)90725-8. [DOI] [PubMed] [Google Scholar]
- Dohn D. R., Anders M. W. Assay of cysteine conjugate beta-lyase activity with S-(2-benzothiazolyl)cysteine as the substrate. Anal Biochem. 1982 Mar 1;120(2):379–386. doi: 10.1016/0003-2697(82)90361-x. [DOI] [PubMed] [Google Scholar]
- Duffel M. W., Jakoby W. B. Cysteine S-conjugate N-acetyltransferase from rat kidney microsomes. Mol Pharmacol. 1982 Mar;21(2):444–448. [PubMed] [Google Scholar]
- Elfarra A. A., Anders M. W. Renal processing of glutathione conjugates. Role in nephrotoxicity. Biochem Pharmacol. 1984 Dec 1;33(23):3729–3732. doi: 10.1016/0006-2952(84)90032-7. [DOI] [PubMed] [Google Scholar]
- Elfarra A. A., Baggs R. B., Anders M. W. Structure-nephrotoxicity relationships of S-(2-chloroethyl)-DL-cysteine and analogs: role for an episulfonium ion. J Pharmacol Exp Ther. 1985 May;233(2):512–516. [PubMed] [Google Scholar]
- Elfarra A. A., Jakobson I., Anders M. W. Mechanism of S-(1,2-dichlorovinyl)glutathione-induced nephrotoxicity. Biochem Pharmacol. 1986 Jan 15;35(2):283–288. doi: 10.1016/0006-2952(86)90527-7. [DOI] [PubMed] [Google Scholar]
- Hemming B. C., Gubler C. J. High-pressure liquid chromatography of alpha-keto acid 2,4-dinitrophenylhydrazones. Anal Biochem. 1979 Jan 1;92(1):31–40. doi: 10.1016/0003-2697(79)90621-3. [DOI] [PubMed] [Google Scholar]
- Inoue M., Okajima K., Morino Y. Hepato-renal cooperation in biotransformation, membrane transport, and elimination of cysteine S-conjugates of xenobiotics. J Biochem. 1984 Jan;95(1):247–254. doi: 10.1093/oxfordjournals.jbchem.a134591. [DOI] [PubMed] [Google Scholar]
- Inoue M., Okajima K., Morino Y. Renal transtubular transport of mercapturic acid in vivo. Biochim Biophys Acta. 1981 Feb 20;641(1):122–128. doi: 10.1016/0005-2736(81)90575-7. [DOI] [PubMed] [Google Scholar]
- Jones D. P., Sundby G. B., Ormstad K., Orrenius S. Use of isolated kidney cells for study of drug metabolism. Biochem Pharmacol. 1979 Mar 15;28(6):929–935. doi: 10.1016/0006-2952(79)90378-2. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Leopold W. R., Miller J. A., Miller E. C. Comparison of some carcinogenic, mutagenic, and biochemical properties of S-vinylhomocysteine and ethionine. Cancer Res. 1982 Nov;42(11):4364–4374. [PubMed] [Google Scholar]
- Moldéus P., Högberg J., Orrenius S. Isolation and use of liver cells. Methods Enzymol. 1978;52:60–71. doi: 10.1016/s0076-6879(78)52006-5. [DOI] [PubMed] [Google Scholar]
- Odum J., Green T. The metabolism and nephrotoxicity of tetrafluoroethylene in the rat. Toxicol Appl Pharmacol. 1984 Nov;76(2):306–318. doi: 10.1016/0041-008x(84)90012-7. [DOI] [PubMed] [Google Scholar]
- Ohno Y., Jones T. W., Ormstad K. Allyl alcohol toxicity in isolated renal epithelial cells: protective effects of low molecular weight thiols. Chem Biol Interact. 1985 Jan;52(3):289–299. doi: 10.1016/0009-2797(85)90024-9. [DOI] [PubMed] [Google Scholar]
- Pankaskie M., Abdel-Monem M. M. Inhibitors of polyamine biosynthesis. 8. Irreversible inhibition of mammalian S-adenosyl-L-methionine decarboxylase by substrate analogues. J Med Chem. 1980 Feb;23(2):121–127. doi: 10.1021/jm00176a004. [DOI] [PubMed] [Google Scholar]
- Read S. M., Northcote D. H. Minimization of variation in the response to different proteins of the Coomassie blue G dye-binding assay for protein. Anal Biochem. 1981 Sep 1;116(1):53–64. doi: 10.1016/0003-2697(81)90321-3. [DOI] [PubMed] [Google Scholar]
- Steele R. D., Benevenga N. J. Identification of 3-methylthiopropionic acid as an intermediate in mammalian methionine metabolism in vitro. J Biol Chem. 1978 Nov 10;253(21):7844–7850. [PubMed] [Google Scholar]
- TERRACINI B., PARKER V. H. A PATHOLOGICAL STUDY ON THE TOXICITY OF S-DICHLOROVINYL-L-CYSTEINE. Food Cosmet Toxicol. 1965 Jul;3:67–74. doi: 10.1016/s0015-6264(65)80010-4. [DOI] [PubMed] [Google Scholar]
- Tanase S., Morino Y. Irreversible inactivation of aspartate aminotransferases during transamination with L-propargylglycine. Biochem Biophys Res Commun. 1976 Feb 23;68(4):1301–1308. doi: 10.1016/0006-291x(76)90338-7. [DOI] [PubMed] [Google Scholar]
- WACHSTEIN M., MEISEL E. Nephrotoxic action of dl-ethionine. Proc Soc Exp Biol Med. 1951 Aug;77(4):648–651. doi: 10.3181/00379727-77-18879. [DOI] [PubMed] [Google Scholar]
- Washtien W., Cooper A. J., Abeles R. H. Substrate proton exchange catalyzed by gamma-cystathionase. Biochemistry. 1977 Feb 8;16(3):460–463. doi: 10.1021/bi00622a019. [DOI] [PubMed] [Google Scholar]
- Zygmunt W. A., Tavormina P. A. DL-S-Trifluoromethylhomocysteine, a novel inhibitor of microbial growth. Can J Microbiol. 1966 Feb;12(1):143–148. doi: 10.1139/m66-020. [DOI] [PubMed] [Google Scholar]
