Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1986 Apr;83(8):2714–2718. doi: 10.1073/pnas.83.8.2714

Studies on the expression of the beta nerve growth factor (NGF) gene in the central nervous system: level and regional distribution of NGF mRNA suggest that NGF functions as a trophic factor for several distinct populations of neurons.

D L Shelton, L F Reichardt
PMCID: PMC323370  PMID: 3458230

Abstract

Beta nerve growth factor (NGF), a target-derived protein necessary for survival and development of sympathetic and sensory neurons, can also affect subpopulations of neurons in the central nervous system (CNS). Using a blot hybridization assay capable of detecting 10 fg of mRNA, we measured the levels of NGF mRNA in the major brain regions, including those innervated by NGF-responsive neurons. NGF mRNA was detected unambiguously in each major region of the CNS. The levels were comparable to those in sympathetic effector organs. Discrete areas contained very different amounts of NGF mRNA. Up to 40-fold differences were seen, a range comparable to the differences between richly and sparsely innervated sympathetic effector organs. The highest concentrations of NGF mRNA were found in the cortex and hippocampus, which are the major targets of the NGF-responsive cholinergic neurons of the basal forebrain nuclei. Significant amounts of NGF mRNA were also found in areas that contain the central processes of NGF-responsive sensory neurons, such as the pons, medulla, and spinal cord. The presence of NGF mRNA in these areas suggests that brain NGF may act as a target-derived trophic factor for both populations of neurons. NGF mRNA was also found in the striatum, suggesting that locally derived NGF may act there as a trophic factor for a recently identified population of NGF-responsive cholinergic local circuit neurons. However, high levels of NGF mRNA were also found in some regions, such as the diencephalon, that have no relation to any identified population of NGF-responsive neurons. This suggests that there may be additional populations of NGF-responsive neurons in the CNS that have not yet been discovered.

Full text

PDF
2714

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barde Y. A., Edgar D., Thoenen H. Purification of a new neurotrophic factor from mammalian brain. EMBO J. 1982;1(5):549–553. doi: 10.1002/j.1460-2075.1982.tb01207.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bartus R. T., Dean R. L., 3rd, Beer B., Lippa A. S. The cholinergic hypothesis of geriatric memory dysfunction. Science. 1982 Jul 30;217(4558):408–414. doi: 10.1126/science.7046051. [DOI] [PubMed] [Google Scholar]
  3. Black I. B., Mytilineou C. The interaction of nerve growth factor and trans-synaptic regulation in the development of target organ innervation by sympathetic neurons. Brain Res. 1976 May 21;108(1):199–204. doi: 10.1016/0006-8993(76)90178-5. [DOI] [PubMed] [Google Scholar]
  4. Bolam J. P., Wainer B. H., Smith A. D. Characterization of cholinergic neurons in the rat neostriatum. A combination of choline acetyltransferase immunocytochemistry, Golgi-impregnation and electron microscopy. Neuroscience. 1984 Jul;12(3):711–718. doi: 10.1016/0306-4522(84)90165-9. [DOI] [PubMed] [Google Scholar]
  5. Crutcher K. A. Cholinergic denervation of rat neocortex results in sympathetic innervation. Exp Neurol. 1981 Oct;74(1):324–329. doi: 10.1016/0014-4886(81)90172-2. [DOI] [PubMed] [Google Scholar]
  6. Gnahn H., Hefti F., Heumann R., Schwab M. E., Thoenen H. NGF-mediated increase of choline acetyltransferase (ChAT) in the neonatal rat forebrain: evidence for a physiological role of NGF in the brain? Brain Res. 1983 Jul;285(1):45–52. doi: 10.1016/0165-3806(83)90107-4. [DOI] [PubMed] [Google Scholar]
  7. Gorin P. D., Johnson E. M. Experimental autoimmune model of nerve growth factor deprivation: effects on developing peripheral sympathetic and sensory neurons. Proc Natl Acad Sci U S A. 1979 Oct;76(10):5382–5386. doi: 10.1073/pnas.76.10.5382. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hefti F., Dravid A., Hartikka J. Chronic intraventricular injections of nerve growth factor elevate hippocampal choline acetyltransferase activity in adult rats with partial septo-hippocampal lesions. Brain Res. 1984 Feb 20;293(2):305–311. doi: 10.1016/0006-8993(84)91237-x. [DOI] [PubMed] [Google Scholar]
  9. Hefti F., Hartikka J., Eckenstein F., Gnahn H., Heumann R., Schwab M. Nerve growth factor increases choline acetyltransferase but not survival or fiber outgrowth of cultured fetal septal cholinergic neurons. Neuroscience. 1985 Jan;14(1):55–68. doi: 10.1016/0306-4522(85)90163-0. [DOI] [PubMed] [Google Scholar]
  10. Hendry I. A., Campbell J. Morphometric analysis of rat superior cervical ganglion after axotomy and nerve growth factor treatment. J Neurocytol. 1976 Jun;5(3):351–360. doi: 10.1007/BF01175120. [DOI] [PubMed] [Google Scholar]
  11. Hendry I. A. The response of adrenergic neurones to axotomy and nerve growth factor. Brain Res. 1975 Aug 22;94(1):87–97. doi: 10.1016/0006-8993(75)90879-3. [DOI] [PubMed] [Google Scholar]
  12. Heumann R., Korsching S., Scott J., Thoenen H. Relationship between levels of nerve growth factor (NGF) and its messenger RNA in sympathetic ganglia and peripheral target tissues. EMBO J. 1984 Dec 20;3(13):3183–3189. doi: 10.1002/j.1460-2075.1984.tb02277.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Honegger P., Lenoir D. Nerve growth factor (NGF) stimulation of cholinergic telencephalic neurons in aggregating cell cultures. Brain Res. 1982 Feb;255(2):229–238. doi: 10.1016/0165-3806(82)90023-2. [DOI] [PubMed] [Google Scholar]
  14. Johnson E. M., Jr, Yip H. K. Central nervous system and peripheral nerve growth factor provide trophic support critical to mature sensory neuronal survival. 1985 Apr 25-May 1Nature. 314(6013):751–752. doi: 10.1038/314751a0. [DOI] [PubMed] [Google Scholar]
  15. Kessler J. A., Black I. B. Nerve growth factor stimulates the development of substance P in sensory ganglia. Proc Natl Acad Sci U S A. 1980 Jan;77(1):649–652. doi: 10.1073/pnas.77.1.649. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Korsching S., Auburger G., Heumann R., Scott J., Thoenen H. Levels of nerve growth factor and its mRNA in the central nervous system of the rat correlate with cholinergic innervation. EMBO J. 1985 Jun;4(6):1389–1393. doi: 10.1002/j.1460-2075.1985.tb03791.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Korsching S., Thoenen H. Nerve growth factor in sympathetic ganglia and corresponding target organs of the rat: correlation with density of sympathetic innervation. Proc Natl Acad Sci U S A. 1983 Jun;80(11):3513–3516. doi: 10.1073/pnas.80.11.3513. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Korsching S., Thoenen H. Quantitative demonstration of the retrograde axonal transport of endogenous nerve growth factor. Neurosci Lett. 1983 Aug 19;39(1):1–4. doi: 10.1016/0304-3940(83)90155-6. [DOI] [PubMed] [Google Scholar]
  19. LEVI-MONTALCINI R., MEYER H., HAMBURGER V. In vitro experiments on the effects of mouse sarcomas 180 and 37 on the spinal and sympathetic ganglia of the chick embryo. Cancer Res. 1954 Jan;14(1):49–57. [PubMed] [Google Scholar]
  20. Levi-Montalcini R., Booker B. DESTRUCTION OF THE SYMPATHETIC GANGLIA IN MAMMALS BY AN ANTISERUM TO A NERVE-GROWTH PROTEIN. Proc Natl Acad Sci U S A. 1960 Mar;46(3):384–391. doi: 10.1073/pnas.46.3.384. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Lewis P. R., Shute C. C. The cholinergic limbic system: projections to hippocampal formation, medial cortex, nuclei of the ascending cholinergic reticular system, and the subfornical organ and supra-optic crest. Brain. 1967 Sep;90(3):521–540. doi: 10.1093/brain/90.3.521. [DOI] [PubMed] [Google Scholar]
  22. Lindsay R. M. Adult rat brain astrocytes support survival of both NGF-dependent and NGF-insensitive neurones. Nature. 1979 Nov 1;282(5734):80–82. doi: 10.1038/282080a0. [DOI] [PubMed] [Google Scholar]
  23. Loy R., Milner T. A., Moore R. Y. Sprouting of sympathetic axons in the hippocampal formation: conditions necessary to elicit ingrowth. Exp Neurol. 1980 Feb;67(2):399–341. doi: 10.1016/0014-4886(80)90239-3. [DOI] [PubMed] [Google Scholar]
  24. MacDonnell P. C., Tolson N., Guroff G. Selective de novo synthesis of tyrosine hydroxylase in organ cultures of rat superior cervical ganglia after in vivo administration of nerve growth factor. J Biol Chem. 1977 Aug 25;252(16):5859–5863. [PubMed] [Google Scholar]
  25. Mobley W. C., Rutkowski J. L., Tennekoon G. I., Buchanan K., Johnston M. V. Choline acetyltransferase activity in striatum of neonatal rats increased by nerve growth factor. Science. 1985 Jul 19;229(4710):284–287. doi: 10.1126/science.2861660. [DOI] [PubMed] [Google Scholar]
  26. Pearson J., Johnson E. M., Brandeis L. Effects of antibodies to nerve growth factor on intrauterine development of derivatives of cranial neural crest and placode in the guinea pig. Dev Biol. 1983 Mar;96(1):32–36. doi: 10.1016/0012-1606(83)90308-1. [DOI] [PubMed] [Google Scholar]
  27. Peterson G. M., Loy R. Sprouting of sympathetic fibers in the hippocampus in the absence of major target cell candidates. Brain Res. 1983 Mar 28;264(1):21–29. doi: 10.1016/0006-8993(83)91117-4. [DOI] [PubMed] [Google Scholar]
  28. Raivich G., Zimmermann A., Sutter A. The spatial and temporal pattern of beta NGF receptor expression in the developing chick embryo. EMBO J. 1985 Mar;4(3):637–644. doi: 10.1002/j.1460-2075.1985.tb03677.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Reivich M., Jehle J., Sokoloff L., Kety S. S. Measurement of regional cerebral blood flow with antipyrine-14C in awake cats. J Appl Physiol. 1969 Aug;27(2):296–300. doi: 10.1152/jappl.1969.27.2.296. [DOI] [PubMed] [Google Scholar]
  30. Richardson P. M., Riopelle R. J. Uptake of nerve growth factor along peripheral and spinal axons of primary sensory neurons. J Neurosci. 1984 Jul;4(7):1683–1689. doi: 10.1523/JNEUROSCI.04-07-01683.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Robins D. M., Paek I., Seeburg P. H., Axel R. Regulated expression of human growth hormone genes in mouse cells. Cell. 1982 Jun;29(2):623–631. doi: 10.1016/0092-8674(82)90178-7. [DOI] [PubMed] [Google Scholar]
  32. Schwab M. E., Otten U., Agid Y., Thoenen H. Nerve growth factor (NGF) in the rat CNS: absence of specific retrograde axonal transport and tyrosine hydroxylase induction in locus coeruleus and substantia nigra. Brain Res. 1979 Jun 8;168(3):473–483. doi: 10.1016/0006-8993(79)90303-2. [DOI] [PubMed] [Google Scholar]
  33. Scott J., Selby M., Urdea M., Quiroga M., Bell G. I., Rutter W. J. Isolation and nucleotide sequence of a cDNA encoding the precursor of mouse nerve growth factor. Nature. 1983 Apr 7;302(5908):538–540. doi: 10.1038/302538a0. [DOI] [PubMed] [Google Scholar]
  34. Seiler M., Schwab M. E. Specific retrograde transport of nerve growth factor (NGF) from neocortex to nucleus basalis in the rat. Brain Res. 1984 May 21;300(1):33–39. doi: 10.1016/0006-8993(84)91338-6. [DOI] [PubMed] [Google Scholar]
  35. Shelton D. L., Reichardt L. F. Expression of the beta-nerve growth factor gene correlates with the density of sympathetic innervation in effector organs. Proc Natl Acad Sci U S A. 1984 Dec;81(24):7951–7955. doi: 10.1073/pnas.81.24.7951. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Shute C. C., Lewis P. R. The ascending cholinergic reticular system: neocortical, olfactory and subcortical projections. Brain. 1967 Sep;90(3):497–520. doi: 10.1093/brain/90.3.497. [DOI] [PubMed] [Google Scholar]
  37. Springer J. E., Loy R. Intrahippocampal injections of antiserum to nerve growth factor inhibit sympathohippocampal sprouting. Brain Res Bull. 1985 Dec;15(6):629–634. doi: 10.1016/0361-9230(85)90212-6. [DOI] [PubMed] [Google Scholar]
  38. Thoenen H., Barde Y. A. Physiology of nerve growth factor. Physiol Rev. 1980 Oct;60(4):1284–1335. doi: 10.1152/physrev.1980.60.4.1284. [DOI] [PubMed] [Google Scholar]
  39. Thoenen H., Schwab M., Otten U. Nerve growth factor as a mediator of information between effector organs and innervating neurons. Symp Soc Dev Biol. 1978;(35):101–118. doi: 10.1016/b978-0-12-612981-6.50011-9. [DOI] [PubMed] [Google Scholar]
  40. Yip H. K., Johnson E. M., Jr Developing dorsal root ganglion neurons require trophic support from their central processes: evidence for a role of retrogradely transported nerve growth factor from the central nervous system to the periphery. Proc Natl Acad Sci U S A. 1984 Oct;81(19):6245–6249. doi: 10.1073/pnas.81.19.6245. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES