Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1986 Apr;83(8):2738–2742. doi: 10.1073/pnas.83.8.2738

An unconventional response of adenylate cyclase to morphine and naloxone in the chicken during early development.

N Sakellaridis, A Vernadakis
PMCID: PMC323375  PMID: 2871554

Abstract

The developmental profile of basal, NaF- and forskolin-stimulated adenylate cyclase [ATP-pyrophosphatelyase (cyclizing), EC 4.6.1.1] activity was established throughout the 21-day embryonic age of the chicken. The highest activities were observed from day 6 to day 8. Morphine inhibited NaF- and forskolin-stimulated brain adenylate cyclase activities only at days 6-8. The inhibition was not reversed by the antagonist naloxone, which also inhibited the enzyme during the same embryonic period and had no inhibitory effect thereafter. Thus, this action of morphine is not mediated through the conventional opiate receptor-adenylate cyclase system. We propose that the temporal specificity of this effect of morphine may play a role in the development of prenatal opiate effects.

Full text

PDF
2738

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Boyd C. A. Chemical neurotransmission: an hypothesis concerning the evolution of neurotransmitter substances. J Theor Biol. 1979 Feb 21;76(4):415–417. doi: 10.1016/0022-5193(79)90010-9. [DOI] [PubMed] [Google Scholar]
  2. Browning E. T., Brostrom C. O., Groppi V. E., Jr Altered adenosine cyclic 3',5'-monophosphate synthesis and degradation by C-6 astrocytoma cells following prolonged exposure to norepinephrine. Mol Pharmacol. 1976 Jan;12(1):32–40. [PubMed] [Google Scholar]
  3. Cooper D. M., Londos C., Gill D. L., Rodbell M. Opiate receptor-mediated inhibition of adenylate cyclase in rat striatal plasma membranes. J Neurochem. 1982 Apr;38(4):1164–1167. doi: 10.1111/j.1471-4159.1982.tb05365.x. [DOI] [PubMed] [Google Scholar]
  4. Gibson D. A., Vernadakis A. Effects of N-LAAM on [3H]etorphine binding in neuronal-enriched cell cultures. Neurochem Res. 1983 Sep;8(9):1197–1202. doi: 10.1007/BF00964933. [DOI] [PubMed] [Google Scholar]
  5. Gibson D. A., Vernadakis A. [3H]Etorphine binding activity in early chick embryos: brain and body tissue. Brain Res. 1982 May;256(1):23–29. doi: 10.1016/0165-3806(82)90093-1. [DOI] [PubMed] [Google Scholar]
  6. Hamburger V. Cell death in the development of the lateral motor column of the chick embryo. J Comp Neurol. 1975 Apr 15;160(4):535–546. doi: 10.1002/cne.901600408. [DOI] [PubMed] [Google Scholar]
  7. Kuwahara M. D., Sparber S. B. Prenatal withdrawal from opiates interferes with hatching of otherwise viable chick fetuses. Science. 1981 May 22;212(4497):945–947. doi: 10.1126/science.7195069. [DOI] [PubMed] [Google Scholar]
  8. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  9. Lichtblau L., Sparber S. B. Opiate withdrawal in utero increases neonatal morbidity in the rat. Science. 1981 May 22;212(4497):943–945. doi: 10.1126/science.7195068. [DOI] [PubMed] [Google Scholar]
  10. Minneman K. P., Hegstrand L. R., Molinoff P. B. The pharmacological specificity of beta-1 and beta-2 adrenergic receptors in rat heart and lung in vitro. Mol Pharmacol. 1979 Jul;16(1):21–33. [PubMed] [Google Scholar]
  11. Nirenberg M., Wilson S., Higashida H., Rotter A., Krueger K., Busis N., Ray R., Kenimer J. G., Adler M. Modulation of synapse formation by cyclic adenosine monophosphate. Science. 1983 Nov 18;222(4625):794–799. doi: 10.1126/science.6314503. [DOI] [PubMed] [Google Scholar]
  12. Perkins J. P. Adenyl cyclase. Adv Cyclic Nucleotide Res. 1973;3:1–64. [PubMed] [Google Scholar]
  13. Resnick R. B., Volavka J., Freedman A. M., Thomas M. Studies of EN-1639A (naltrexone): a new narcotic antagonist. Am J Psychiatry. 1974 Jun;131(6):646–650. doi: 10.1176/ajp.131.6.646. [DOI] [PubMed] [Google Scholar]
  14. Robertson A., Drage D. J., Cohen M. H. Control of Aggregation in Dictyostelium discoideum by an External Periodic Pulse of Cyclic Adenosine Monophosphate. Science. 1972 Jan 21;175(4019):333–335. doi: 10.1126/science.175.4019.333. [DOI] [PubMed] [Google Scholar]
  15. Rosen O. M., Rosen S. M. The effect of catecholamines on the adenyl cyclase of frog and tadpole hemolysates. Biochem Biophys Res Commun. 1968 Apr 5;31(1):82–91. doi: 10.1016/0006-291x(68)90034-x. [DOI] [PubMed] [Google Scholar]
  16. SUTHERLAND E. W., RALL T. W., MENON T. Adenyl cylase. I. Distribution, preparation, and properties. J Biol Chem. 1962 Apr;237:1220–1227. [PubMed] [Google Scholar]
  17. Sadler S. E., Maller J. L. Progesterone inhibits adenylate cyclase in Xenopus oocytes. Action on the guanine nucleotide regulatory protein. J Biol Chem. 1981 Jun 25;256(12):6368–6373. [PubMed] [Google Scholar]
  18. Salomon Y., Londos C., Rodbell M. A highly sensitive adenylate cyclase assay. Anal Biochem. 1974 Apr;58(2):541–548. doi: 10.1016/0003-2697(74)90222-x. [DOI] [PubMed] [Google Scholar]
  19. Seamon K. B., Daly J. W. Forskolin: a unique diterpene activator of cyclic AMP-generating systems. J Cyclic Nucleotide Res. 1981;7(4):201–224. [PubMed] [Google Scholar]
  20. Seamon K. B., Vaillancourt R., Edwards M., Daly J. W. Binding of [3H]forskolin to rat brain membranes. Proc Natl Acad Sci U S A. 1984 Aug;81(16):5081–5085. doi: 10.1073/pnas.81.16.5081. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Sharma S. K., Klee W. A., Nirenberg M. Dual regulation of adenylate cyclase accounts for narcotic dependence and tolerance. Proc Natl Acad Sci U S A. 1975 Aug;72(8):3092–3096. doi: 10.1073/pnas.72.8.3092. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Sharma S. K., Nirenberg M., Klee W. A. Morphine receptors as regulators of adenylate cyclase activity. Proc Natl Acad Sci U S A. 1975 Feb;72(2):590–594. doi: 10.1073/pnas.72.2.590. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Trams E. G. On the evolution of neurochemical transmission. Differentiation. 1981;19(3):125–133. doi: 10.1111/j.1432-0436.1981.tb01140.x. [DOI] [PubMed] [Google Scholar]
  24. Vernadakis A. Comparative studies of neurotransmitter substances in the maturing and aging central nervous system of the chicken. Prog Brain Res. 1973;40(0):231–243. doi: 10.1016/s0079-6123(08)60690-1. [DOI] [PubMed] [Google Scholar]
  25. Vernadakis A. Uptake of 3H-norepinephrine in the cerebral hemispheres and cerebellum of the chicken throughout the lifespan. Mech Ageing Dev. 1973 Oct-Nov;2(4):371–379. doi: 10.1016/0047-6374(73)90031-6. [DOI] [PubMed] [Google Scholar]
  26. Zagon I. S., McLaughlin P. J., Weaver D. J., Zagon E. Opiates, endorphins and the developing organism: a comprehensive bibliography. Neurosci Biobehav Rev. 1982 Winter;6(4):439–479. doi: 10.1016/0149-7634(82)90027-6. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES