Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1986 Apr;83(8):2743–2745. doi: 10.1073/pnas.83.8.2743

Potassium conductance of the squid giant axon is modulated by ATP.

F Bezanilla, C Caputo, R DiPolo, H Rojas
PMCID: PMC323376  PMID: 2422660

Abstract

This communication reports a modulating effect of intracellular ATP on the steady-state and kinetic properties of the delayed rectifier of the giant axon of the squid. When internally dialyzed or perfused giant axons from Loligo plei or Loligo pealei are voltage clamped at -60 mV and washed free of ATP, the potassium current at 0 mV is decreased, and the time course of the potassium current is faster. Upon readmitting ATP, the potassium current for pulses to potentials more positive than -30 mV is increased by a factor of up to 2.5, while for pulses to potentials more negative than -30 mV, it is decreased. In the presence of ATP the turn-on of the time course of the potassium current is slower, but the turn-off of the time course is faster. The effect of ATP is only observed when magnesium ions are present in the internal medium; ADP or the nonhydrolyzable ATP analogue adenosine 5'-[beta, gamma-methylene]-triphosphate has no effect. When the holding potential is -70 mV, the conductance-voltage curve is shifted to more positive potentials by ATP, but the maximum conductance is only slightly increased. Most of the effects of ATP may be explained by a phosphorylation step that alters the voltage sensor of the activation and inactivation gates of the potassium channels shifting the voltage dependence of both processes to more depolarized potentials.

Full text

PDF
2743

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bezanilla F., Taylor R. E., Fernández J. M. Distribution and kinetics of membrane dielectric polarization. 1. Long-term inactivation of gating currents. J Gen Physiol. 1982 Jan;79(1):21–40. doi: 10.1085/jgp.79.1.21. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Brinley F. J., Jr, Mullins L. J. Sodium extrusion by internally dialyzed squid axons. J Gen Physiol. 1967 Nov;50(10):2303–2331. doi: 10.1085/jgp.50.10.2303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Dipolo R., Bezanilla F., Caputo C., Rojas H. Voltage dependence of the Na/Ca exchange in voltage-clamped, dialyzed squid axons. Na-dependent Ca efflux. J Gen Physiol. 1985 Oct;86(4):457–478. doi: 10.1085/jgp.86.4.457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Gilly W. F., Armstrong C. M. Divalent cations and the activation kinetics of potassium channels in squid giant axons. J Gen Physiol. 1982 Jun;79(6):965–996. doi: 10.1085/jgp.79.6.965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. HODGKIN A. L., HUXLEY A. F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol. 1952 Aug;117(4):500–544. doi: 10.1113/jphysiol.1952.sp004764. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Tasaki I., Singer I., Takenaka T. Effects of internal and external ionic environment on excitability of squid giant axon. A macromolecular approach. J Gen Physiol. 1965 Jul;48(6):1095–1123. doi: 10.1085/jgp.48.6.1095. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES