Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1986 Apr;83(8):2751–2754. doi: 10.1073/pnas.83.8.2751

L-glutamic acid, a neurotrophic factor for maintenance of acetylcholinesterase and butyrylcholinesterase in the preganglionically denervated superior cervical ganglion of the cat.

G B Koelle, U J Sanville, N S Thampi, S J Wall
PMCID: PMC323378  PMID: 3458234

Abstract

In continuation of previous studies, the intraarterial fusion of L-glutamic acid for 24 hr was found to oppose the decrease in acetylcholinesterase and butyrylcholinesterase in the superior cervical ganglion of the cat that otherwise occurs 48 hr after preganglionic denervation. The combination of glutamic acid and gamma-aminobutyric acid, in concentrations that were inactive individually, likewise produced the same neurotrophic effect. Inactive in this respect were glycine plus L-glutamine, pyroglutamic acid, gamma-aminobutyric acid, and L-aspartic acid. The possible mechanisms and implications of these findings are discussed.

Full text

PDF
2751

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bowery N. G., Brown D. A. Depolarizing actions of gamma-aminobutyric acid and related compounds on rat superior cervical ganglia in vitro. Br J Pharmacol. 1974 Feb;50(2):205–218. doi: 10.1111/j.1476-5381.1974.tb08563.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Davis R., Koelle G. B. Electron microscope localization of acetylcholinesterase and butyrylcholinesterase in the superior cervical ganglion of the cat. II. Preganglionically denervated ganglion. J Cell Biol. 1981 Mar;88(3):581–590. doi: 10.1083/jcb.88.3.581. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. ELLMAN G. L., COURTNEY K. D., ANDRES V., Jr, FEATHER-STONE R. M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol. 1961 Jul;7:88–95. doi: 10.1016/0006-2952(61)90145-9. [DOI] [PubMed] [Google Scholar]
  4. Fagg G. E., Foster A. C. Amino acid neurotransmitters and their pathways in the mammalian central nervous system. Neuroscience. 1983 Aug;9(4):701–719. doi: 10.1016/0306-4522(83)90263-4. [DOI] [PubMed] [Google Scholar]
  5. Hamberger A., Nyström B. Extra- and intracellular amino acids in the hippocampus during development of hepatic encephalopathy. Neurochem Res. 1984 Sep;9(9):1181–1192. doi: 10.1007/BF00973033. [DOI] [PubMed] [Google Scholar]
  6. Koelle G. B., Davis R., Koelle W. A. Effects of aldehyde fixation and of preganglionic denervation on acetylcholinesterase and butyrocholinesterase of cat autonomic ganglia. J Histochem Cytochem. 1974 Apr;22(4):244–251. doi: 10.1177/22.4.244. [DOI] [PubMed] [Google Scholar]
  7. Koelle G. B., Ruch G. A. Demonstration of a neurotrophic factor for the maintenance of acetylcholinesterase and butyrylcholinesterase in the preganglionically denervated superior cervical ganglion of the cat. Proc Natl Acad Sci U S A. 1983 May;80(10):3106–3110. doi: 10.1073/pnas.80.10.3106. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Koelle G. B., Ruch G. A., Rickard K. K., Sanville U. J. Regeneration of cholinesterases in the stellate and normal and denervated superior cervical ganglion of the cat following inactivation by sarin. J Neurochem. 1982 Jun;38(6):1695–1698. doi: 10.1111/j.1471-4159.1982.tb06651.x. [DOI] [PubMed] [Google Scholar]
  9. Koelle G. B., Ruch G. A., Uchida E. Effects of sodium pentobarbital anesthesia and neurotrophic factor on the maintenance of acetylcholinesterase and butyrylcholinesterase in the preganglionically denervated superior cervical ganglion of the cat. Proc Natl Acad Sci U S A. 1983 Oct;80(19):6122–6125. doi: 10.1073/pnas.80.19.6122. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Koelle G. B., Sanville U. J., Rickard K. K., Williams J. E. Partial characterization of the neurotrophic factor for maintenance of acetylcholinesterase and butyrylcholinesterase in the preganglionically denervated superior cervical ganglion of the cat in vivo. Proc Natl Acad Sci U S A. 1984 Oct;81(20):6539–6542. doi: 10.1073/pnas.81.20.6539. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Koelle G. B., Sanville U. J., Wall S. J. Glycyl-L-glutamine, a precursor, and glycyl-L-glutamic acid, a neurotrophic factor for maintenance of acetylcholinesterase and butyrylcholinesterase in the preganglionically denervated superior cervical ganglion of the cat in vivo. Proc Natl Acad Sci U S A. 1985 Aug;82(15):5213–5217. doi: 10.1073/pnas.82.15.5213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  13. Massoulié J., Bon S. The molecular forms of cholinesterase and acetylcholinesterase in vertebrates. Annu Rev Neurosci. 1982;5:57–106. doi: 10.1146/annurev.ne.05.030182.000421. [DOI] [PubMed] [Google Scholar]
  14. Perry T. L., Hansen S., Kennedy J. CSF amino acids and plasma--CSF amino acid ratios in adults. J Neurochem. 1975 Mar;24(3):587–589. doi: 10.1111/j.1471-4159.1975.tb07680.x. [DOI] [PubMed] [Google Scholar]
  15. SALGANICOFF L., DEROBERTIS E. SUBCELLULAR DISTRIBUTION OF THE ENZYMES OF THE GLUTAMIC ACID, GLUTAMINE AND GAMMA-AMINOBUTYRIC ACID CYCLES IN RAT BRAIN. J Neurochem. 1965 Apr;12:287–309. doi: 10.1111/j.1471-4159.1965.tb06766.x. [DOI] [PubMed] [Google Scholar]
  16. SALVADOR R. A., ALBERS R. W. The distribution of glutamic-gamma-aminobutric transaminase in the nervous system of the rhesus monkey. J Biol Chem. 1959 Apr;234(4):922–925. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES