Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1986 Apr;83(8):2758–2762. doi: 10.1073/pnas.83.8.2758

Alterations in calcium content and biochemical processes in cultured skin fibroblasts from aged and Alzheimer donors.

C Peterson, J E Goldman
PMCID: PMC323380  PMID: 3458236

Abstract

Aging and Alzheimer disease lead to alterations in several biochemical properties of cultured skin fibroblasts. Total bound calcium increases in fibroblasts due to normal aging (+52%) and is elevated even further with Alzheimer disease (+197%). Processes that require mitochondrial function, such as glucose and glutamine oxidation, declined in cells from aged donors (-25%) and decreased even further in Alzheimer disease (-46%). In addition, biosynthetic processes that depend upon mitochondrial function, such as glucose or glutamine incorporation into protein and lipid, paralleled the oxidative decreases. Cytosolic and nuclear processes such as leucine incorporation into protein and thymidine into DNA were depressed more by aging than Alzheimer disease. These findings suggest that calcium homeostasis and mitochondrial functions are altered more by Alzheimer disease than normal aging.

Full text

PDF
2758

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brown M. S., Goldstein J. L. Familial hypercholesterolemia: defective binding of lipoproteins to cultured fibroblasts associated with impaired regulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity. Proc Natl Acad Sci U S A. 1974 Mar;71(3):788–792. doi: 10.1073/pnas.71.3.788. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bygrave F. L. The effect of calcium ions on the glycolytic activity of Ehrlich ascites-tumour cells. Biochem J. 1966 Nov;101(2):480–487. doi: 10.1042/bj1010480. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bygrave F. L. The ionic environment and metabolic control. Nature. 1967 May 13;214(5089):667–671. doi: 10.1038/214667a0. [DOI] [PubMed] [Google Scholar]
  4. Diamond J. M., Matsuyama S. S., Meier K., Jarvik L. F. Elevation of erythrocyte countertransport rates in Alzheimer's dementia. N Engl J Med. 1983 Oct 27;309(17):1061–1062. [PubMed] [Google Scholar]
  5. Dulbecco R., Elkington J. Induction of growth in resting fibroblastic cell cultures by Ca++. Proc Natl Acad Sci U S A. 1975 Apr;72(4):1584–1588. doi: 10.1073/pnas.72.4.1584. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Erwin B. G., Stoscheck C. M., Florini J. R. A rapid fluorometric method for the estimation of DNA in cultured cells. Anal Biochem. 1981 Jan 15;110(2):291–294. doi: 10.1016/0003-2697(81)90194-9. [DOI] [PubMed] [Google Scholar]
  7. Foster N. L., Chase T. N., Mansi L., Brooks R., Fedio P., Patronas N. J., Di Chiro G. Cortical abnormalities in Alzheimer's disease. Ann Neurol. 1984 Dec;16(6):649–654. doi: 10.1002/ana.410160605. [DOI] [PubMed] [Google Scholar]
  8. Friedland R. P., Budinger T. F., Ganz E., Yano Y., Mathis C. A., Koss B., Ober B. A., Huesman R. H., Derenzo S. E. Regional cerebral metabolic alterations in dementia of the Alzheimer type: positron emission tomography with [18F]fluorodeoxyglucose. J Comput Assist Tomogr. 1983 Aug;7(4):590–598. doi: 10.1097/00004728-198308000-00003. [DOI] [PubMed] [Google Scholar]
  9. Jarvik L. F., Matsuyama S. S., Kessler J. O., Fu T. K., Tsai S. Y., Clark E. O. Philothermal response of polymorphonuclear leukocytes in dementia of the Alzheimer type. Neurobiol Aging. 1982 Summer;3(2):93–99. doi: 10.1016/0197-4580(82)90002-1. [DOI] [PubMed] [Google Scholar]
  10. Khansari N., Whitten H. D., Chou Y. K., Fudenberg H. H. Immunological dysfunction in Alzheimer's disease. J Neuroimmunol. 1985 Feb-Mar;7(5-6):279–285. doi: 10.1016/s0165-5728(84)80027-2. [DOI] [PubMed] [Google Scholar]
  11. LEVINE E. M., BECKER Y., BOONE C. W., EAGLE H. CONTACT INHIBITION, MACROMOLECULAR SYNTHESIS, AND POLYRIBOSOMES IN CULTURED HUMAN DIPLOID FIBROBLASTS. Proc Natl Acad Sci U S A. 1965 Feb;53:350–356. doi: 10.1073/pnas.53.2.350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Li J. C., Kaminskas E. Deficient repair of DNA lesions in Alzheimer's disease fibroblasts. Biochem Biophys Res Commun. 1985 Jun 28;129(3):733–738. doi: 10.1016/0006-291x(85)91953-9. [DOI] [PubMed] [Google Scholar]
  13. Markesbery W. R., Leung P. K., Butterfield D. A. Spin label and biochemical studies of erythrocyte membranes in Alzheimer's disease. J Neurol Sci. 1980 Mar;45(2-3):323–330. doi: 10.1016/0022-510x(80)90175-6. [DOI] [PubMed] [Google Scholar]
  14. Markwell M. A., Haas S. M., Bieber L. L., Tolbert N. E. A modification of the Lowry procedure to simplify protein determination in membrane and lipoprotein samples. Anal Biochem. 1978 Jun 15;87(1):206–210. doi: 10.1016/0003-2697(78)90586-9. [DOI] [PubMed] [Google Scholar]
  15. Martin G. M., Sprague C. A., Epstein C. J. Replicative life-span of cultivated human cells. Effects of donor's age, tissue, and genotype. Lab Invest. 1970 Jul;23(1):86–92. [PubMed] [Google Scholar]
  16. Miller A. E., Neighbour P. A., Katzman R., Aronson M., Lipkowitz R. Immunological studies in senile dementia of the Alzheimer type: evidence for enhanced suppressor cell activity. Ann Neurol. 1981 Dec;10(6):506–510. doi: 10.1002/ana.410100603. [DOI] [PubMed] [Google Scholar]
  17. Nordenson I., Adolfsson R., Beckman G., Bucht G., Winblad B. Chromosomal abnormality in dementia of Alzheimer type. Lancet. 1980 Mar 1;1(8166):481–482. doi: 10.1016/s0140-6736(80)91020-x. [DOI] [PubMed] [Google Scholar]
  18. Perl D. P., Gajdusek D. C., Garruto R. M., Yanagihara R. T., Gibbs C. J. Intraneuronal aluminum accumulation in amyotrophic lateral sclerosis and Parkinsonism-dementia of Guam. Science. 1982 Sep 10;217(4564):1053–1055. doi: 10.1126/science.7112111. [DOI] [PubMed] [Google Scholar]
  19. Perry R. H., Wilson I. D., Bober M. J., Atack J., Blessed G., Tomlinson B. E., Perry E. K. Plasma and erythrocyte acetylcholinesterase in senile dementia of Alzheimer type. Lancet. 1982 Jan 16;1(8264):174–175. doi: 10.1016/s0140-6736(82)90429-9. [DOI] [PubMed] [Google Scholar]
  20. Peterson C., Gibson G. E. Aging and 3,4-diaminopyridine alter synaptosomal calcium uptake. J Biol Chem. 1983 Oct 10;258(19):11482–11486. [PubMed] [Google Scholar]
  21. Peterson C., Gibson G. E. Amelioration of age-related neurochemical and behavioral deficits by 3,4-diaminopyridine. Neurobiol Aging. 1983 Spring;4(1):25–30. doi: 10.1016/0197-4580(83)90050-7. [DOI] [PubMed] [Google Scholar]
  22. Peterson C., Gibson G. E., Blass J. P. Altered calcium uptake in cultured skin fibroblasts from patients with Alzheimer's disease. N Engl J Med. 1985 Apr 18;312(16):1063–1065. doi: 10.1056/NEJM198504183121618. [DOI] [PubMed] [Google Scholar]
  23. Peterson C., Gibson G. E. Synaptosomal calcium metabolism during hypoxia and 3,4-diaminopyridine treatment. J Neurochem. 1984 Jan;42(1):248–253. doi: 10.1111/j.1471-4159.1984.tb09725.x. [DOI] [PubMed] [Google Scholar]
  24. Peterson C., Nicholls D. G., Gibson G. E. Subsynaptosomal distribution of calcium during aging and 3,4-diaminopyridine treatment. Neurobiol Aging. 1985 Winter;6(4):297–304. doi: 10.1016/0197-4580(85)90007-7. [DOI] [PubMed] [Google Scholar]
  25. Ropper A. H., Williams R. S. Relationship between plaques, tangles, and dementia in Down syndrome. Neurology. 1980 Jun;30(6):639–644. doi: 10.1212/wnl.30.6.639. [DOI] [PubMed] [Google Scholar]
  26. Rosenbloom A. L., Goldstein S., Yip C. C. Insulin binding to cultured human fibroblasts increases with normal and precocious aging. Science. 1976 Jul 30;193(4251):412–415. doi: 10.1126/science.180604. [DOI] [PubMed] [Google Scholar]
  27. Schneider E. L., Mitsui Y. The relationship between in vitro cellular aging and in vivo human age. Proc Natl Acad Sci U S A. 1976 Oct;73(10):3584–3588. doi: 10.1073/pnas.73.10.3584. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Schneider E. L., Shorr S. S. Alteration in cellular RNAs during the in vitro lifespan of cultured human diploid fibroblasts. Cell. 1975 Oct;6(2):179–184. doi: 10.1016/0092-8674(75)90008-2. [DOI] [PubMed] [Google Scholar]
  29. Scott I. D., Akerman K. E., Nicholls D. G. Calcium-ion transport by intact synaptosomes. Intrasynaptosomal compartmentation and the role of the mitochondrial membrane potential. Biochem J. 1980 Dec 15;192(3):873–880. doi: 10.1042/bj1920873. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Selkoe D. J., Abraham C., Ihara Y. Brain transglutaminase: in vitro crosslinking of human neurofilament proteins into insoluble polymers. Proc Natl Acad Sci U S A. 1982 Oct;79(19):6070–6074. doi: 10.1073/pnas.79.19.6070. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Selkoe D. J., Ihara Y., Salazar F. J. Alzheimer's disease: insolubility of partially purified paired helical filaments in sodium dodecyl sulfate and urea. Science. 1982 Mar 5;215(4537):1243–1245. doi: 10.1126/science.6120571. [DOI] [PubMed] [Google Scholar]
  32. Shapiro B. L., Lam L. F. Calcium and age in fibroblasts from control subjects and patients with cystic fibrosis. Science. 1982 Apr 23;216(4544):417–419. doi: 10.1126/science.7071590. [DOI] [PubMed] [Google Scholar]
  33. Sincock A. M. Calcium and aging in the rotifer Mytilina brevispina var redunca. J Gerontol. 1974 Sep;29(5):514–517. doi: 10.1093/geronj/29.5.514. [DOI] [PubMed] [Google Scholar]
  34. Sumbilla C. M., Zielke C. L., Reed W. D., Ozand P. T., Zielke H. R. Comparison of the oxidation of glutamine, glucose, ketone bodies and fatty acids by human diploid fibroblasts. Biochim Biophys Acta. 1981 Jul;675(2):301–304. doi: 10.1016/0304-4165(81)90242-7. [DOI] [PubMed] [Google Scholar]
  35. Terry R. D., Katzman R. Senile dementia of the Alzheimer type. Ann Neurol. 1983 Nov;14(5):497–506. doi: 10.1002/ana.410140502. [DOI] [PubMed] [Google Scholar]
  36. Tildon J. T., Stevenson J. H. Decreased oxidation of labeled glucose by dissociated brain cells in the presence of fetal bovine serum. Science. 1984 May 25;224(4651):903–904. doi: 10.1126/science.6719124. [DOI] [PubMed] [Google Scholar]
  37. Veldhuis J. D., Klase P. A. Role of calcium ions in the stimulatory actions of luteinizing hormone in isolated ovarian cells: studies with divalent-cation ionophores. Biochem Biophys Res Commun. 1982 Jan 29;104(2):603–610. doi: 10.1016/0006-291x(82)90680-5. [DOI] [PubMed] [Google Scholar]
  38. Wesseling H., Agoston S., Van Dam G. B., Pasma J., DeWit D. J., Havinga H. Effects of 4-aminopyridine in elderly patients with Alzheimer's disease. N Engl J Med. 1984 Apr 12;310(15):988–989. doi: 10.1056/NEJM198404123101514. [DOI] [PubMed] [Google Scholar]
  39. Whitfield J. F., Boynton A. L., MacManus J. P., Rixon R. H., Sikorska M., Tsang B., Walker P. R., Swierenga S. H. The roles of calcium and cyclic AMP in cell proliferation. Ann N Y Acad Sci. 1980;339:216–240. doi: 10.1111/j.1749-6632.1980.tb15980.x. [DOI] [PubMed] [Google Scholar]
  40. Wilson S. H., Schrier B. K., Farber J. L., Thompson E. J., Rosenberg R. N., Blume A. J., Nirenberg M. W. Markers for gene expression in cultured cells from the nervous system. J Biol Chem. 1972 May 25;247(10):3159–3169. [PubMed] [Google Scholar]
  41. ZWARTOUW H. T., WESTWOOD J. C. Factors affecting growth and glycolysis in tissue culture. Br J Exp Pathol. 1958 Oct;39(5):529–539. [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES