Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1986 May;83(9):2832–2835. doi: 10.1073/pnas.83.9.2832

Cholecystokinin-associated COOH-terminal peptides are fully sulfated in pig brain.

J Eng, U Gubler, J P Raufman, M Chang, J D Hulmes, Y C Pan, R S Yalow
PMCID: PMC323400  PMID: 3458244

Abstract

A radioimmunoassay was developed to detect the cholecystokinin (CCK)-associated nonapeptide (CAP-9) that forms the COOH terminus of pig preproCCK. This peptide (Ser-Ala-Glu-Glu-Tyr-Glu-Tyr-Thr-Ser) is presumably produced at the time that the tyrosine-sulfated octapeptide CCK8(s) is cleaved from preproCCK. Radioimmunoassay of a dried methanol extract of pig brain revealed no detectable CAP-9 immunoreactivity, whereas acid desulfation of the dried methanol extract prior to radioimmunoassay resulted in easily measurable concentrations of CAP-9 immunoreactivity. Two peptides, CAP-9 and des-Ser9-CAP-9, were purified from a methanol extract of 8 kg of commercially obtained whole pig brains. Amino acid analysis showed that each peptide has both tyrosines sulfated. Thus, the likely sequence of CCK post-translational processing events is sulfation of the three tyrosines in the COOH terminus of preproCCK followed by peptide cleavage and appearance of CCK8(s) and CAP-9(s,s).

Full text

PDF
2832

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baeuerle P. A., Huttner W. B. Inhibition of N-glycosylation induces tyrosine sulphation of hybridoma immunoglobulin G. EMBO J. 1984 Oct;3(10):2209–2215. doi: 10.1002/j.1460-2075.1984.tb02118.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Baeuerle P. A., Huttner W. B. Tyrosine sulfation of yolk proteins 1, 2, and 3 in Drosophila melanogaster. J Biol Chem. 1985 May 25;260(10):6434–6439. [PubMed] [Google Scholar]
  3. Deschenes R. J., Lorenz L. J., Haun R. S., Roos B. A., Collier K. J., Dixon J. E. Cloning and sequence analysis of a cDNA encoding rat preprocholecystokinin. Proc Natl Acad Sci U S A. 1984 Feb;81(3):726–730. doi: 10.1073/pnas.81.3.726. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Dockray G. J., Gregory R. A., Hutchison J. B., Harris J. I., Runswick M. J. Isolation, structure and biological activity of two cholecystokinin octapeptides from sheep brain. Nature. 1978 Aug 17;274(5672):711–713. doi: 10.1038/274711a0. [DOI] [PubMed] [Google Scholar]
  5. Dockray G. J. Immunochemical evidence of cholecystokinin-like peptides in brain. Nature. 1976 Dec 9;264(5586):568–570. doi: 10.1038/264568a0. [DOI] [PubMed] [Google Scholar]
  6. Eng J., Shiina Y., Pan Y. C., Blacher R., Chang M., Stein S., Yalow R. S. Pig brain contains cholecystokinin octapeptide and several cholecystokinin desoctapeptides. Proc Natl Acad Sci U S A. 1983 Oct;80(20):6381–6385. doi: 10.1073/pnas.80.20.6381. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Eng J., Shiina Y., Straus E., Yalow R. S. Post-translational processing of cholecystokinin in pig brain and gut. Proc Natl Acad Sci U S A. 1982 Oct;79(19):6060–6064. doi: 10.1073/pnas.79.19.6060. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Friedman J., Schneider B. S., Powell D. Differential expression of the mouse cholecystokinin gene during brain and gut development. Proc Natl Acad Sci U S A. 1985 Sep;82(17):5593–5597. doi: 10.1073/pnas.82.17.5593. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gardner J. D., Jackson M. J. Regulation of amylase release from dispersed pancreatic acinar cells. J Physiol. 1977 Sep;270(2):439–454. doi: 10.1113/jphysiol.1977.sp011961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gubler U., Chua A. O., Hoffman B. J., Collier K. J., Eng J. Cloned cDNA to cholecystokinin mRNA predicts an identical preprocholecystokinin in pig brain and gut. Proc Natl Acad Sci U S A. 1984 Jul;81(14):4307–4310. doi: 10.1073/pnas.81.14.4307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hawke D., Yuan P. M., Shively J. E. Microsequence analysis of peptides and proteins. II. Separation of amino acid phenylthiohydantoin derivatives by high-performance liquid chromatography on octadecylsilane supports. Anal Biochem. 1982 Mar 1;120(2):302–311. doi: 10.1016/0003-2697(82)90351-7. [DOI] [PubMed] [Google Scholar]
  12. Hewick R. M., Hunkapiller M. W., Hood L. E., Dreyer W. J. A gas-liquid solid phase peptide and protein sequenator. J Biol Chem. 1981 Aug 10;256(15):7990–7997. [PubMed] [Google Scholar]
  13. Hille A., Rosa P., Huttner W. B. Tyrosine sulfation: a post-translational modification of proteins destined for secretion? FEBS Lett. 1984 Nov 5;177(1):129–134. doi: 10.1016/0014-5793(84)80996-5. [DOI] [PubMed] [Google Scholar]
  14. Huttner W. B. Determination and occurrence of tyrosine O-sulfate in proteins. Methods Enzymol. 1984;107:200–223. doi: 10.1016/0076-6879(84)07013-0. [DOI] [PubMed] [Google Scholar]
  15. Ichihara K., Eng J., Pond W. G., Yen J. T., Straus E., Yalow R. S. Ontogeny of immunoreactive CCK and VIP in pig brain and gut. Peptides. 1984 May-Jun;5(3):623–626. doi: 10.1016/0196-9781(84)90093-7. [DOI] [PubMed] [Google Scholar]
  16. Lee R. W., Huttner W. B. (Glu62, Ala30, Tyr8)n serves as high-affinity substrate for tyrosylprotein sulfotransferase: a Golgi enzyme. Proc Natl Acad Sci U S A. 1985 Sep;82(18):6143–6147. doi: 10.1073/pnas.82.18.6143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Liu M. C., Lipmann F. Isolation of tyrosine-O-sulfate by Pronase hydrolysis from fibronectin secreted by Fujinami sarcoma virus-infected rat fibroblasts. Proc Natl Acad Sci U S A. 1985 Jan;82(1):34–37. doi: 10.1073/pnas.82.1.34. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Muller J. E., Straus E., Yalow R. S. Cholecystokinin and its COOH-terminal octapeptide in the pig brain. Proc Natl Acad Sci U S A. 1977 Jul;74(7):3035–3037. doi: 10.1073/pnas.74.7.3035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Peikin S. R., Rottman A. J., Batzri S., Gardner J. D. Kinetics of amylase release by dispersed acini prepared from guinea pig pancreas. Am J Physiol. 1978 Dec;235(6):E743–E749. doi: 10.1152/ajpendo.1978.235.6.E743. [DOI] [PubMed] [Google Scholar]
  20. Rosa P., Fumagalli G., Zanini A., Huttner W. B. The major tyrosine-sulfated protein of the bovine anterior pituitary is a secretory protein present in gonadotrophs, thyrotrophs, mammotrophs, and corticotrophs. J Cell Biol. 1985 Mar;100(3):928–937. doi: 10.1083/jcb.100.3.928. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Stein S., Böhlen P., Stone J., Dairman W., Udenfriend S. Amino acid analysis with fluorescamine at the picomole level. Arch Biochem Biophys. 1973 Mar;155(1):202–212. doi: 10.1016/s0003-9861(73)80022-0. [DOI] [PubMed] [Google Scholar]
  22. Straus E., Yalow R. S. Species specificity of cholecystokinin in gut and brain of several mammalian species. Proc Natl Acad Sci U S A. 1978 Jan;75(1):486–489. doi: 10.1073/pnas.75.1.486. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Takahashi Y., Kato K., Hayashizaki Y., Wakabayashi T., Ohtsuka E., Matsuki S., Ikehara M., Matsubara K. Molecular cloning of the human cholecystokinin gene by use of a synthetic probe containing deoxyinosine. Proc Natl Acad Sci U S A. 1985 Apr;82(7):1931–1935. doi: 10.1073/pnas.82.7.1931. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Vanderhaeghen J. J., Signeau J. C., Gepts W. New peptide in the vertebrate CNS reacting with antigastrin antibodies. Nature. 1975 Oct 16;257(5527):604–605. doi: 10.1038/257604a0. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES