Abstract
Treatment of HepG2 cells with various concentrations of 17 beta-estradiol has revealed two distinct thresholds for induction of different apolipoproteins. Maximal increases in apolipoprotein AI and CII (apoAI and apoCII) secretion can be obtained with initial concentrations of hormone of 20 nM or greater, while a similar induction of apoB and apoE requires in excess of 500 nM. Both responses involve alterations in the concentrations of apolipoprotein mRNAs. Analyses of the kinetics of accumulation of the apolipoproteins in response to high concentrations of hormone indicate that induction of apoB and apoE occurs coordinately, but it lags behind that of apoAI and apoCII by 5-6 hr. This lag can be eliminated by preexposing the cells to low concentrations of hormone. The ability to induce apoAI and apoCII and the kinetics with which they respond to low levels of estrogen correlate with levels of nuclear type I estrogen binding sites, while increases in apoE and apoB synthesis in response to high concentrations of hormone correlate with the induction of type II sites. Testosterone alone has no effect on the rates of apolipoprotein secretion, but it does increase the concentration of estrogen required to maximally induce apoCII and apoAI by a mechanism that involves high-affinity androgen receptors. This effect may be attributable to the testosterone-dependent induction of a cytoplasmic moderate-affinity estrogen-binding component.
Full text
PDF




Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Archer T. K., Tam S. P., Deugau K. V., Deeley R. G. Apolipoprotein C-II mRNA levels in primate liver. Induction by estrogen in the human hepatocarcinoma cell line, HepG2. J Biol Chem. 1985 Feb 10;260(3):1676–1681. [PubMed] [Google Scholar]
- Breslow J. L., McPherson J., Nussbaum A. L., Williams H. W., Lofquist-Kahl F., Karathanasis S. K., Zannis V. I. Identification and DNA sequence of a human apolipoprotein E cDNA clone. J Biol Chem. 1982 Dec 25;257(24):14639–14641. [PubMed] [Google Scholar]
- Chao Y. S., Windler E. E., Chen G. C., Havel R. J. Hepatic catabolism of rat and human lipoproteins in rats treated with 17 alpha-ethinyl estradiol. J Biol Chem. 1979 Nov 25;254(22):11360–11366. [PubMed] [Google Scholar]
- Clark J. H., Winneker R. C., Guthrie S. C., Markaverich B. M. An endogenous ligand for the triphenylethylene antiestrogen binding site. Endocrinology. 1983 Sep;113(3):1167–1169. doi: 10.1210/endo-113-3-1167. [DOI] [PubMed] [Google Scholar]
- Eagon P. K., Fisher S. E., Imhoff A. F., Porter L. E., Stewart R. R., Van Thiel D. H., Lester R. Estrogen-binding proteins of male rat liver: influences of hormonal changes. Arch Biochem Biophys. 1980 May;201(2):486–499. doi: 10.1016/0003-9861(80)90537-8. [DOI] [PubMed] [Google Scholar]
- Goldstein J. L., Brown M. S. The low-density lipoprotein pathway and its relation to atherosclerosis. Annu Rev Biochem. 1977;46:897–930. doi: 10.1146/annurev.bi.46.070177.004341. [DOI] [PubMed] [Google Scholar]
- Havel R. J. The formation of LDL: mechanisms and regulation. J Lipid Res. 1984 Dec 15;25(13):1570–1576. [PubMed] [Google Scholar]
- Illingworth D. D., Lindsey S., Hagemenas F. C. Regulation of low-density lipoprotein receptors in the human hepatoma cell line Hep G2. Exp Cell Res. 1984 Dec;155(2):518–526. doi: 10.1016/0014-4827(84)90211-8. [DOI] [PubMed] [Google Scholar]
- Kannel W. B., Hjortland M. C., McNamara P. M., Gordon T. Menopause and risk of cardiovascular disease: the Framingham study. Ann Intern Med. 1976 Oct;85(4):447–452. doi: 10.7326/0003-4819-85-4-447. [DOI] [PubMed] [Google Scholar]
- Kim H. J., Kalkhoff R. K. Altered apolipoproteins in sex steroid-treated rats. Metabolism. 1978 May;27(5):571–587. doi: 10.1016/0026-0495(78)90024-0. [DOI] [PubMed] [Google Scholar]
- Knowles B. B., Howe C. C., Aden D. P. Human hepatocellular carcinoma cell lines secrete the major plasma proteins and hepatitis B surface antigen. Science. 1980 Jul 25;209(4455):497–499. doi: 10.1126/science.6248960. [DOI] [PubMed] [Google Scholar]
- Kushwaha R. S., Hazzard W. R. Effect of exogenous estrogens on catabolism of VLDL in cholesterol-fed rabbits. Am J Physiol. 1981 Nov;241(5):E372–E377. doi: 10.1152/ajpendo.1981.241.5.E372. [DOI] [PubMed] [Google Scholar]
- Lazier C. B., Jordan V. C. High affinity binding of anti-oestrogen to the chick liver nuclear oestrogen receptor. Biochem J. 1982 Aug 15;206(2):387–394. doi: 10.1042/bj2060387. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Markaverich B. M., Upchurch S., Clark J. H. Progesterone and dexamethasone antagonism of uterine growth: a role for a second nuclear binding site for estradiol in estrogen action. J Steroid Biochem. 1981 Feb;14(2):125–132. doi: 10.1016/0022-4731(81)90164-3. [DOI] [PubMed] [Google Scholar]
- Markaverich B. M., Williams M., Upchurch S., Clark J. H. Heterogeneity of nuclear estrogen-binding sites in the rat uterus: a simple method for the quantitation of type I and type II sites by [3H]estradiol exchange. Endocrinology. 1981 Jul;109(1):62–69. doi: 10.1210/endo-109-1-62. [DOI] [PubMed] [Google Scholar]
- Murphy P. R., Breckenridge W. C., Lazier C. B. Binding of oxygenated cholesterol metabolites to antiestrogen binding sites from chicken liver. Biochem Biophys Res Commun. 1985 Mar 29;127(3):786–792. doi: 10.1016/s0006-291x(85)80012-7. [DOI] [PubMed] [Google Scholar]
- Peets E. A., Henson M. F., Neri R. On the mechanism of the anti-androgenic action of flutamide (alpha-alpha-alpha-trifluoro-2-methyl-4'-nitro-m-propionotoluidide) in the rat. Endocrinology. 1974 Feb;94(2):532–540. doi: 10.1210/endo-94-2-532. [DOI] [PubMed] [Google Scholar]
- Pitas R. E., Innerarity T. L., Arnold K. S., Mahley R. W. Rate and equilibrium constants for binding of apo-E HDLc (a cholesterol-induced lipoprotein) and low density lipoproteins to human fibroblasts: evidence for multiple receptor binding of apo-E HDLc. Proc Natl Acad Sci U S A. 1979 May;76(5):2311–2315. doi: 10.1073/pnas.76.5.2311. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rosenthal H. E. A graphic method for the determination and presentation of binding parameters in a complex system. Anal Biochem. 1967 Sep;20(3):525–532. doi: 10.1016/0003-2697(67)90297-7. [DOI] [PubMed] [Google Scholar]
- Rumbaugh R. C., Clark J. C., McDaniel O. S., Lucier G. W. Feminization of the concentrations of hepatic estrogen-binding proteins by ectopic pituitary. Endocrinology. 1983 Apr;112(4):1363–1369. doi: 10.1210/endo-112-4-1363. [DOI] [PubMed] [Google Scholar]
- Schaefer E. J., Foster D. M., Zech L. A., Lindgren F. T., Brewer H. B., Jr, Levy R. I. The effects of estrogen administration on plasma lipoprotein metabolism in premenopausal females. J Clin Endocrinol Metab. 1983 Aug;57(2):262–267. doi: 10.1210/jcem-57-2-262. [DOI] [PubMed] [Google Scholar]
- Semmens J., Rouse I., Beilin L. J., Masarei J. R. Relationship of plasma HDL-cholesterol to testosterone, estradiol, and sex-hormone-binding globulin levels in men and women. Metabolism. 1983 May;32(5):428–432. doi: 10.1016/0026-0495(83)90002-1. [DOI] [PubMed] [Google Scholar]
- Sloop T. C., Clark J. C., Rumbaugh R. C., Lucier G. W. Imprinting of hepatic estrogen-binding proteins by neonatal androgens. Endocrinology. 1983 May;112(5):1639–1646. doi: 10.1210/endo-112-5-1639. [DOI] [PubMed] [Google Scholar]
- Syne J. S., Markaverich B. M., Clark J. H., Panko W. B. Estrogen binding sites in the nucleus of normal and malignant human tissue: characteristics of the multiple nuclear binding sites. Cancer Res. 1982 Nov;42(11):4449–4454. [PubMed] [Google Scholar]
- Tam S. P., Archer T. K., Deeley R. G. Effects of estrogen on apolipoprotein secretion by the human hepatocarcinoma cell line, HepG2. J Biol Chem. 1985 Feb 10;260(3):1670–1675. [PubMed] [Google Scholar]
- Tikkanen M. J., Nikkilä E. A., Kuusi T., Sipinen S. U. High density lipoprotein-2 and hepatic lipase: reciprocal changes produced by estrogen and norgestrel. J Clin Endocrinol Metab. 1982 Jun;54(6):1113–1117. doi: 10.1210/jcem-54-6-1113. [DOI] [PubMed] [Google Scholar]
- Webb O. L., Laskarzewski P. M., Glueck C. J. Severe depression of high-density lipoprotein cholesterol levels in weight lifters and body builders by self-administered exogenous testosterone and anabolic-androgenic steroids. Metabolism. 1984 Nov;33(11):971–975. doi: 10.1016/0026-0495(84)90222-1. [DOI] [PubMed] [Google Scholar]
- Williams D., Gorski J. Equilibrium binding of estradiol by uterine cell suspensions and whole uteri in vitro. Biochemistry. 1974 Dec 31;13(27):5537–5542. doi: 10.1021/bi00724a013. [DOI] [PubMed] [Google Scholar]
- Windler E. E., Kovanen P. T., Chao Y. S., Brown M. S., Havel R. J., Goldstein J. L. The estradiol-stimulated lipoprotein receptor of rat liver. A binding site that membrane mediates the uptake of rat lipoproteins containing apoproteins B and E. J Biol Chem. 1980 Nov 10;255(21):10464–10471. [PubMed] [Google Scholar]
- Winneker R. C., Guthrie S. C., Clark J. H. Characterization of a triphenylethylene-antiestrogen-binding site on rat serum low density lipoprotein. Endocrinology. 1983 May;112(5):1823–1827. doi: 10.1210/endo-112-5-1823. [DOI] [PubMed] [Google Scholar]
- Zannis V. I., Breslow J. L., SanGiacomo T. R., Aden D. P., Knowles B. B. Characterization of the major apolipoproteins secreted by two human hepatoma cell lines. Biochemistry. 1981 Dec 8;20(25):7089–7096. doi: 10.1021/bi00528a006. [DOI] [PubMed] [Google Scholar]

