Abstract
Thymopoietin is a polypeptide hormone of the thymus with physiological effects on the immune system and on acetylcholine-mediated transmission at the neuromuscular synapse. Elucidation of the structure and function of the nicotinic acetylcholine receptor has been facilitated by the use of the electric organs of Torpedo ray or Electrophorus eel as rich sources of the receptor and by the use of snake polypeptide toxins such as alpha-bungarotoxin as highly selective labels of the acetylcholine binding site. We now show that thymopoietin binds with high affinity (Ka approximately equal to 2.5 X 10(9) M-1) to the acetylcholine binding region of the acetylcholine receptor of Torpedo californica, as evidenced by similar and complete inhibition of the binding of radiolabeled thymopoietin or alpha-bungarotoxin by either of these polypeptides. These findings raise intriguing questions concerning the mechanisms whereby alpha-bungarotoxin and the thymopoietin affect acetylcholine receptor function, since these two polypeptides with such similar binding properties have very different functional effects.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Audhya T., Scheid M. P., Goldstein G. Contrasting biological activities of thymopoietin and splenin, two closely related polypeptide products of thymus and spleen. Proc Natl Acad Sci U S A. 1984 May;81(9):2847–2849. doi: 10.1073/pnas.81.9.2847. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Audhya T., Schlesinger D. H., Goldstein G. Complete amino acid sequences of bovine thymopoietins I, II, and III: closely homologous polypeptides. Biochemistry. 1981 Oct 13;20(21):6195–6200. doi: 10.1021/bi00524a044. [DOI] [PubMed] [Google Scholar]
- Audhya T., Talle M. A., Goldstein G. Thymopoietin radioreceptor assay utilizing lectin-purified glycoprotein from a biologically responsive T cell line. Arch Biochem Biophys. 1984 Oct;234(1):167–177. doi: 10.1016/0003-9861(84)90338-2. [DOI] [PubMed] [Google Scholar]
- Bach J. F., Papiernik M., Levasseur P., Dardenne M., Barois A., Le Brigand H. Evidence for a serum-factor secreted by the human thymus. Lancet. 1972 Nov 18;2(7786):1056–1058. doi: 10.1016/s0140-6736(72)92339-2. [DOI] [PubMed] [Google Scholar]
- Basch R. S., Goldstein G. Induction of T-cell differentiation in vitro by thymin, a purified polypeptide hormone of the thymus. Proc Natl Acad Sci U S A. 1974 Apr;71(4):1474–1478. doi: 10.1073/pnas.71.4.1474. [DOI] [PMC free article] [PubMed] [Google Scholar]
- CHANG C. C., LEE C. Y. ISOLATION OF NEUROTOXINS FROM THE VENOM OF BUNGARUS MULTICINCTUS AND THEIR MODES OF NEUROMUSCULAR BLOCKING ACTION. Arch Int Pharmacodyn Ther. 1963 Jul 1;144:241–257. [PubMed] [Google Scholar]
- Changeux J. P., Devillers-Thiéry A., Chemouilli P. Acetylcholine receptor: an allosteric protein. Science. 1984 Sep 21;225(4668):1335–1345. doi: 10.1126/science.6382611. [DOI] [PubMed] [Google Scholar]
- Changeux J. P. Responses of acetylcholinesterase from Torpedo marmorata to salts and curarizing drugs. Mol Pharmacol. 1966 Sep;2(5):369–392. [PubMed] [Google Scholar]
- Cull-Candy S. G., Miledi R., Trautmann A. End-plate currents and acetylcholine noise at normal and myasthenic human end-plates. J Physiol. 1979 Feb;287:247–265. doi: 10.1113/jphysiol.1979.sp012657. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Drachman D. B., Adams R. N., Josifek L. F., Pestronk A., Stanley E. F. Antibody-mediated mechanisms of ACh receptor loss in myasthenia gravis: clinical relevance. Ann N Y Acad Sci. 1981;377:175–188. doi: 10.1111/j.1749-6632.1981.tb33731.x. [DOI] [PubMed] [Google Scholar]
- Drachman D. B. The biology of myasthenia gravis. Annu Rev Neurosci. 1981;4:195–225. doi: 10.1146/annurev.ne.04.030181.001211. [DOI] [PubMed] [Google Scholar]
- ELMQVIST D., HOFMANN W. W., KUGELBERG J., QUASTEL D. M. AN ELECTROPHYSIOLOGICAL INVESTIGATION OF NEUROMUSCULAR TRANSMISSION IN MYASTHENIA GRAVIS. J Physiol. 1964 Nov;174:417–434. doi: 10.1113/jphysiol.1964.sp007495. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fambrough D. M., Drachman D. B., Satyamurti S. Neuromuscular junction in myasthenia gravis: decreased acetylcholine receptors. Science. 1973 Oct 19;182(4109):293–295. doi: 10.1126/science.182.4109.293. [DOI] [PubMed] [Google Scholar]
- Fuccello A., Audhya T., Talle M. A., Goldstein G. Immunoassay for bovine serum thymopoietin: discrimination from splenin by monoclonal antibodies. Arch Biochem Biophys. 1984 Jan;228(1):292–298. doi: 10.1016/0003-9861(84)90070-5. [DOI] [PubMed] [Google Scholar]
- Goldstein G., Hofmann W. W. Electrophysiological changes similar to those of myasthenia gravis in rats with experimental autoimmune thymitis. J Neurol Neurosurg Psychiatry. 1968 Oct;31(5):453–459. doi: 10.1136/jnnp.31.5.453. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goldstein G., Hofmann W. W. Endocrine function of the thymus affecting neuromuscular transmission. Clin Exp Immunol. 1969 Feb;4(2):181–189. [PMC free article] [PubMed] [Google Scholar]
- Goldstein G. Isolation of bovine thymin: a polypeptide hormone of the thymus. Nature. 1974 Jan 4;247(5435):11–14. doi: 10.1038/247011a0. [DOI] [PubMed] [Google Scholar]
- Goldstein G., Manganaro A. Thymin: a thymic polypeptide causing the neuromuscular block of myasthenia gravis. Ann N Y Acad Sci. 1971 Sep 15;183:230–240. doi: 10.1111/j.1749-6632.1971.tb30754.x. [DOI] [PubMed] [Google Scholar]
- Goldstein G. Radioimmunoassay for thymopoietin. J Immunol. 1976 Aug;117(2):690–692. [PubMed] [Google Scholar]
- Goldstein G., Scheid M. P., Boyse E. A., Schlesinger D. H., Van Wauwe J. A synthetic pentapeptide with biological activity characteristic of the thymic hormone thymopoietin. Science. 1979 Jun 22;204(4399):1309–1310. doi: 10.1126/science.451537. [DOI] [PubMed] [Google Scholar]
- Goldstein G., Scheid M., Hammerling U., Schlesinger D. H., Niall H. D., Boyse E. A. Isolation of a polypeptide that has lymphocyte-differentiating properties and is probably represented universally in living cells. Proc Natl Acad Sci U S A. 1975 Jan;72(1):11–15. doi: 10.1073/pnas.72.1.11. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goldstein G. Thymitis and myasthenia gravis. Lancet. 1966 Nov 26;2(7474):1164–1167. doi: 10.1016/s0140-6736(66)90479-x. [DOI] [PubMed] [Google Scholar]
- Goldstein G., Whittingham S. Experimental autoimmune thymitis. An animal model of human myasthenia gravis. Lancet. 1966 Aug 6;2(7458):315–318. doi: 10.1016/s0140-6736(66)92599-2. [DOI] [PubMed] [Google Scholar]
- KEYNES G. The results of thymectomy in myasthenia gravis. Br Med J. 1949 Sep 17;2(4628):611–616. doi: 10.1136/bmj.2.4628.611. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Klett R. P., Fulpius B. W., Cooper D., Smith M., Reich E., Possani L. D. The acetylcholine receptor. I. Purification and characterization of a macromolecule isolated from Electrophorus electricus. J Biol Chem. 1973 Oct 10;248(19):6841–6853. [PubMed] [Google Scholar]
- Lee C. Y., Chang C. C., Chen Y. M. Reversibility of neuromuscular blockade by neurotoxins from elapid and sea snake venoms. Taiwan Yi Xue Hui Za Zhi. 1972 Jun 28;71(6):344–349. [PubMed] [Google Scholar]
- Lee C. Y., Chang C. C. Modes of actions of purified toxins from elapid venoms on neuromuscular transmission. Mem Inst Butantan. 1966;33(2):555–572. [PubMed] [Google Scholar]
- Lee C. Y., Tseng L. F. Distribution of Bungarus multicinctus venom following envenomation. Toxicon. 1966 Apr;3(4):281–290. doi: 10.1016/0041-0101(66)90076-6. [DOI] [PubMed] [Google Scholar]
- Lindstrom J. M., Lambert E. H. Content of acetylcholine receptor and antibodies bound to receptor in myasthenia gravis, experimental autoimmune myasthenia gravis, and Eaton-Lambert syndrome. Neurology. 1978 Feb;28(2):130–138. doi: 10.1212/wnl.28.2.130. [DOI] [PubMed] [Google Scholar]
- Lindstrom J. M., Seybold M. E., Lennon V. A., Whittingham S., Duane D. D. Antibody to acetylcholine receptor in myasthenia gravis. Prevalence, clinical correlates, and diagnostic value. Neurology. 1976 Nov;26(11):1054–1059. doi: 10.1212/wnl.26.11.1054. [DOI] [PubMed] [Google Scholar]
- Lindstrom J., Dau P. Biology of myasthenia gravis. Annu Rev Pharmacol Toxicol. 1980;20:337–362. doi: 10.1146/annurev.pa.20.040180.002005. [DOI] [PubMed] [Google Scholar]
- Lindstrom J., Tzartos S., Gullick W. Structure and function of the acetylcholine receptor molecule studied using monoclonal antibodies. Ann N Y Acad Sci. 1981;377:1–19. doi: 10.1111/j.1749-6632.1981.tb33721.x. [DOI] [PubMed] [Google Scholar]
- Mebs D., Narita K., Iwanaga S., Samejima Y., Lee C. Y. Amino acid sequence of -bungarotoxin from the venom of Bungarus multicinctus. Biochem Biophys Res Commun. 1971 Aug 6;44(3):711–716. doi: 10.1016/s0006-291x(71)80141-9. [DOI] [PubMed] [Google Scholar]
- Miledi R., Molinoff P., Potter L. T. Isolation of the cholinergic receptor protein of Torpedo electric tissue. Nature. 1971 Feb 19;229(5286):554–557. doi: 10.1038/229554a0. [DOI] [PubMed] [Google Scholar]
- Mintz S., Petersen S. R., MacFarland D., Petajan J., Richards R. C. The current role of thymectomy for myasthenia gravis. Am J Surg. 1980 Dec;140(6):734–737. doi: 10.1016/0002-9610(80)90106-3. [DOI] [PubMed] [Google Scholar]
- Munson P. J., Rodbard D. Ligand: a versatile computerized approach for characterization of ligand-binding systems. Anal Biochem. 1980 Sep 1;107(1):220–239. doi: 10.1016/0003-2697(80)90515-1. [DOI] [PubMed] [Google Scholar]
- Patrick J., Lindstrom J. Autoimmune response to acetylcholine receptor. Science. 1973 May 25;180(4088):871–872. doi: 10.1126/science.180.4088.871. [DOI] [PubMed] [Google Scholar]
- Scheid M. P., Goldstein G., Boyse E. A. The generation and regulation of lymphocyte populations: evidence from differentiative induction systems in vitro. J Exp Med. 1978 Jun 1;147(6):1727–1743. doi: 10.1084/jem.147.6.1727. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schlesinger D. H., Goldstein G. The amino acid sequence of thymopoietin II. Cell. 1975 Aug;5(4):361–365. doi: 10.1016/0092-8674(75)90054-9. [DOI] [PubMed] [Google Scholar]
- Schmidt J., Raftery M. A. A simple assay for the study of solubilized acetylcholine receptors. Anal Biochem. 1973 Apr;52(2):349–354. doi: 10.1016/0003-2697(73)90036-5. [DOI] [PubMed] [Google Scholar]
- Seybold M. E., Baergen R. N., Nave B., Lindstrom J. M. Anti-acetylcholine-receptor antibody concentrations after thymectomy in patients with myasthenia gravis. Br Med J. 1978 Oct 14;2(6144):1051–1053. doi: 10.1136/bmj.2.6144.1051. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Twomey J. J., Goldstein G., Lewis V. M., Bealmear P. M., Good R. A. Bioassay determinations of thymopoietin and thymic hormone levels in human plasma. Proc Natl Acad Sci U S A. 1977 Jun;74(6):2541–2545. doi: 10.1073/pnas.74.6.2541. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Twomey J. J., Lewis V. M., Patten B. M., Goldstein G., Good R. A. Myasthenia gravis, thymectomy and serum thymic hormone activity. Am J Med. 1979 Apr;66(4):639–643. doi: 10.1016/0002-9343(79)91175-6. [DOI] [PubMed] [Google Scholar]
- Weber M., Changeux J. P. Binding of Naja nigricollis (3H)alpha-toxin to membrane fragments from Electrophorus and Torpedo electric organs. I. Binding of the tritiated alpha-neurotoxin in the absence of effector. Mol Pharmacol. 1974 Jan;10(1):1–14. [PubMed] [Google Scholar]
- Wood F. T., Wu M. M., Gerhart J. C. The radioactive labeling of proteins with an iodinated amidination reagent. Anal Biochem. 1975 Dec;69(2):339–349. doi: 10.1016/0003-2697(75)90136-0. [DOI] [PubMed] [Google Scholar]
- Yang C. C. The disulfide bonds of cobrotoxin and their relationship to lethality. Biochim Biophys Acta. 1967 Feb 21;133(2):346–355. doi: 10.1016/0005-2795(67)90074-8. [DOI] [PubMed] [Google Scholar]