Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1986 May;83(10):3518–3522. doi: 10.1073/pnas.83.10.3518

Brain-specific hyaluronate-binding protein: an immunohistological study with monoclonal antibodies of human and bovine central nervous system.

A Bignami, D Dahl
PMCID: PMC323548  PMID: 2422652

Abstract

Hyaluronectin is a protein isolated from acid extracts of human brain by affinity chromatography on immobilized hyaluronate. With polyclonal antibodies, it was immunohistologically localized in the rat at the nodes of Ranvier of central and peripheral myelinated fibers and in mesenchymal tissues. Compared to adult rat, hyaluronectin-immunoreactive material was more abundant in embryonal rat brain and mesenchyma. We report a different localization in human and bovine tissues with monoclonal antibodies reacting with human hyaluronectin by NaDodSO4/PAGE and immunoblotting but not staining rat tissues by immunohistology. In human and calf the antigen reacting with hyaluronectin monoclonal antibodies was brain specific, while several peripheral tissues were stained by the polyclonal antibodies. In human and bovine central nervous system monoclonal antibodies stained white matter and tissues formed predominantly by glial fibers (e.g., subependymal glia). In white matter hyaluronectin-immunoreactive material formed a delicate mesh surrounding individual myelinated fibers, a pattern compatible with the distribution of fine astroglial processes in this location. Gray matter did not stain with monoclonal antibodies, the granular layer of the cerebellum excepted. The findings suggest that human hyaluronectin is heterogeneous and comprises at least two fractions. The main fraction is a brain-specific protein, probably produced by white matter astrocytes. Another fraction cross-reacting with rat is more abundant in embryonal tissues, including mesenchyma and brain.

Full text

PDF
3518

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aquino D. A., Margolis R. U., Margolis R. K. Immunocytochemical localization of a chondroitin sulfate proteoglycan in nervous tissue. I. Adult brain, retina, and peripheral nerve. J Cell Biol. 1984 Sep;99(3):1117–1129. doi: 10.1083/jcb.99.3.1117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Aquino D. A., Margolis R. U., Margolis R. K. Immunocytochemical localization of a chondroitin sulfate proteoglycan in nervous tissue. II. Studies in developing brain. J Cell Biol. 1984 Sep;99(3):1130–1139. doi: 10.1083/jcb.99.3.1130. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Asou H., Brunngraber E. G., Delpech B. Localization of hyaluronectin in oligodendroglial cells. J Neurochem. 1983 Feb;40(2):589–591. doi: 10.1111/j.1471-4159.1983.tb11324.x. [DOI] [PubMed] [Google Scholar]
  4. Baues R. J., Gray G. R. Lectin purification on affinity columns containing reductively aminated disaccharides. J Biol Chem. 1977 Jan 10;252(1):57–60. [PubMed] [Google Scholar]
  5. Bignami A., Dahl D. Astrocyte-specific protein and neuroglial differentiation. An immunofluorescence study with antibodies to the glial fibrillary acidic protein. J Comp Neurol. 1974 Jan 1;153(1):27–38. doi: 10.1002/cne.901530104. [DOI] [PubMed] [Google Scholar]
  6. Bignami A., Dahl D. Differentiation of astrocytes in the cerebellar cortex and the pyramidal tracts of the newborn rat. An immunofluorescence study with antibodies to a protein specific to astrocytes. Brain Res. 1973 Jan 30;49(2):393–402. doi: 10.1016/0006-8993(73)90430-7. [DOI] [PubMed] [Google Scholar]
  7. Dahl D., Bignami A. Intermediate filaments in nervous tissue. Cell Muscle Motil. 1985;6:75–96. doi: 10.1007/978-1-4757-4723-2_4. [DOI] [PubMed] [Google Scholar]
  8. Dahl D., Grossi M., Bignami A. Masking of epitopes in tissue sections. A study of glial fibrillary acidic (GFA) protein with antisera and monoclonal antibodies. Histochemistry. 1984;81(6):525–531. doi: 10.1007/BF00489531. [DOI] [PubMed] [Google Scholar]
  9. Dahl D. Immunohistochemical differences between neurofilaments in perikarya, dendrites and axons. Immunofluorescence study with antisera raised to neurofilament polypeptides (200K, 150K, 70K) isolated by anion exchange chromatography. Exp Cell Res. 1983 Dec;149(2):397–408. doi: 10.1016/0014-4827(83)90352-x. [DOI] [PubMed] [Google Scholar]
  10. Delpech A., Delpech B. Expression of hyaluronic acid-binding glycoprotein, hyaluronectin, in the developing rat embryo. Dev Biol. 1984 Feb;101(2):391–400. doi: 10.1016/0012-1606(84)90153-2. [DOI] [PubMed] [Google Scholar]
  11. Delpech A., Girard N., Delpech B. Localization of hyaluronectin in the nervous system. Brain Res. 1982 Aug 12;245(2):251–257. doi: 10.1016/0006-8993(82)90807-1. [DOI] [PubMed] [Google Scholar]
  12. Delpech B., Halavent C. Characterization and purification from human brain of a hyaluronic acid-binding glycoprotein, hyaluronectin. J Neurochem. 1981 Mar;36(3):855–859. doi: 10.1111/j.1471-4159.1981.tb01672.x. [DOI] [PubMed] [Google Scholar]
  13. Delpech B. Immunochemical characterization of the hyaluronic acid-hyaluronectin interaction. J Neurochem. 1982 Apr;38(4):978–984. doi: 10.1111/j.1471-4159.1982.tb05338.x. [DOI] [PubMed] [Google Scholar]
  14. Girard N., Bertrand P., Delpech A., Delpech B. Caractérisation tissulaire de l'acide hyaluronique dans le cervelet par la hyaluronectine. C R Acad Sci III. 1984;298(12):325–330. [PubMed] [Google Scholar]
  15. Hatten M. E., Furie M. B., Rifkin D. B. Binding of developing mouse cerebellar cells to fibronectin: a possible mechanism for the formation of the external granular layer. J Neurosci. 1982 Sep;2(9):1195–1206. doi: 10.1523/JNEUROSCI.02-09-01195.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  17. Liesi P. Do neurons in the vertebrate CNS migrate on laminin? EMBO J. 1985 May;4(5):1163–1170. doi: 10.1002/j.1460-2075.1985.tb03755.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Price J., Hynes R. O. Astrocytes in culture synthesize and secrete a variant form of fibronectin. J Neurosci. 1985 Aug;5(8):2205–2211. doi: 10.1523/JNEUROSCI.05-08-02205.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Raff M. C., Miller R. H., Noble M. A glial progenitor cell that develops in vitro into an astrocyte or an oligodendrocyte depending on culture medium. Nature. 1983 Jun 2;303(5916):390–396. doi: 10.1038/303390a0. [DOI] [PubMed] [Google Scholar]
  20. Ripellino J. A., Klinger M. M., Margolis R. U., Margolis R. K. The hyaluronic acid binding region as a specific probe for the localization of hyaluronic acid in tissue sections. Application to chick embryo and rat brain. J Histochem Cytochem. 1985 Oct;33(10):1060–1066. doi: 10.1177/33.10.4045184. [DOI] [PubMed] [Google Scholar]
  21. Tengblad A. Affinity chromatography on immobilized hyaluronate and its application to the isolation of hyaluronate binding properties from cartilage. Biochim Biophys Acta. 1979 Jun 19;578(2):281–289. doi: 10.1016/0005-2795(79)90158-2. [DOI] [PubMed] [Google Scholar]
  22. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES