Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1986 Jun;83(11):3584–3588. doi: 10.1073/pnas.83.11.3584

Hepatocellular uptake of oleate is energy dependent, sodium linked, and inhibited by an antibody to a hepatocyte plasma membrane fatty acid binding protein.

W Stremmel, G Strohmeyer, P D Berk
PMCID: PMC323567  PMID: 3459144

Abstract

Several studies suggest that a portion of hepatocellular nonesterified fatty acid uptake may be carrier mediated. To further investigate this process, initial rates (Vo) of [14C]oleate uptake into rat hepatocytes, isolated by collagenase perfusion and incubated at 37 degrees C with oleate in the presence of bovine serum albumin, were studied as a function of the concentration of unbound [14C]oleate in the medium. Vo was saturable with increasing unbound oleate concentration (Km = 8.3 X 10(-8) M; Vmax = 197 pmol per min per 5 X 10(4) hepatocytes) and was not inhibited by up to 40 microM sulfobromophthalein, taurocholate, or cholic acid. Oleate uptake was sodium dependent. Vo was significantly diminished when Li+, K+, choline, or sucrose were substituted for Na+ in the incubation medium and was reduced 46% by 1 mM ouabain. Uptake was also markedly reduced after exposure of cells to metabolic inhibitors (e.g., 2,4-dinitrophenol, carbonyl cyanide m-chlorophenylhydrazone, antimycin, KCN). To evaluate the physiologic significance of the previously isolated rat liver plasma membrane fatty acid-binding protein, the effect of an antibody directed against this protein on hepatocellular [14C]oleate uptake was examined. Preincubation of hepatocytes with the IgG fraction of this antiserum inhibited Vo of [14C]oleate by up to 65% in dose-related fashion, without altering Vo for [35S]sulfobromophthalein, [14C]taurocholate, or [3H]cholate. These data indicate that at least a portion of hepatocellular oleate uptake is energy dependent, sodium linked, and mediated by a specific liver plasma membrane-fatty acid-binding protein.

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abumrad N. A., Park J. H., Park C. R. Permeation of long-chain fatty acid into adipocytes. Kinetics, specificity, and evidence for involvement of a membrane protein. J Biol Chem. 1984 Jul 25;259(14):8945–8953. [PubMed] [Google Scholar]
  2. Abumrad N. A., Perkins R. C., Park J. H., Park C. R. Mechanism of long chain fatty acid permeation in the isolated adipocyte. J Biol Chem. 1981 Sep 10;256(17):9183–9191. [PubMed] [Google Scholar]
  3. Andersen B. L., Tarpley H. T., Regen D. M. Characterization of beta-hydroxybutyrate transport in rat erythrocytes and thymocytes. Biochim Biophys Acta. 1978 Apr 20;508(3):525–538. doi: 10.1016/0005-2736(78)90097-4. [DOI] [PubMed] [Google Scholar]
  4. Anwer M. S., Hegner D. Effect of Na on bile acid uptake by isolated rat hepatocytes. Evidence for a heterogeneous system. Hoppe Seylers Z Physiol Chem. 1978 Feb;359(2):181–192. [PubMed] [Google Scholar]
  5. Baker K. J., Bradley S. E. Binding of sulfobromophthalein (BSP) sodium by plasma albumin. Its role in hepatic BSP extraction. J Clin Invest. 1966 Feb;45(2):281–287. doi: 10.1172/JCI105341. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Boyer J. L., Reno D. Properties of (Na+ plus K+)-activated ATPase in rat liver plasma membranes enriched with bile canaliculi. Biochim Biophys Acta. 1975 Aug 5;401(1):59–72. doi: 10.1016/0005-2736(75)90341-7. [DOI] [PubMed] [Google Scholar]
  7. Burke C. W., Lewis B., Panveliwalla D., Tabaqchali S. The binding of cholic acid and its taurine conjugate to serum proteins. Clin Chim Acta. 1971 Apr;32(2):207–214. doi: 10.1016/0009-8981(71)90334-2. [DOI] [PubMed] [Google Scholar]
  8. Christiansen R. Z. Regulation of palmitate metabolism by carnitine and glucagon in hepatocytes isolated from fasted and carbohydrate refed rats. Biochim Biophys Acta. 1977 Aug 24;488(2):249–262. doi: 10.1016/0005-2760(77)90182-5. [DOI] [PubMed] [Google Scholar]
  9. DeGrella R. F., Light R. J. Uptake and metabolism of fatty acids by dispersed adult rat heart myocytes. I. Kinetics of homologous fatty acids. J Biol Chem. 1980 Oct 25;255(20):9731–9738. [PubMed] [Google Scholar]
  10. DeGrella R. F., Light R. J. Uptake and metabolism of fatty acids by dispersed adult rat heart myocytes. II. Inhibition by albumin and fatty acid homologues, and the effect of temperature and metabolic reagents. J Biol Chem. 1980 Oct 25;255(20):9739–9745. [PubMed] [Google Scholar]
  11. Forker E. L., Luxon B. A. Albumin helps mediate removal of taurocholate by rat liver. J Clin Invest. 1981 May;67(5):1517–1522. doi: 10.1172/JCI110182. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Forker E. L., Luxon B. A., Snell M., Shurmantine W. O. Effect of albumin binding on the hepatic transport of rose bengal: surface-mediated dissociation of limited capacity. J Pharmacol Exp Ther. 1982 Nov;223(2):342–347. [PubMed] [Google Scholar]
  13. Ikeda M., Shimada K., Sakaguchi T. High-performance liquid chromatographic determination of free fatty acids with 1-naphthylamine. J Chromatogr. 1983 Feb 11;272(2):251–259. doi: 10.1016/s0378-4347(00)86127-7. [DOI] [PubMed] [Google Scholar]
  14. Kramer W., Buscher H. P., Gerok W., Kurz G. Bile salt binding to serum components. Taurocholate incorporation into high-density lipoprotein revealed by photoaffinity labelling. Eur J Biochem. 1979 Dec;102(1):1–9. doi: 10.1111/j.1432-1033.1979.tb06257.x. [DOI] [PubMed] [Google Scholar]
  15. Kuhl W. E., Spector A. A. Uptake of long-chain fatty acid methyl esters by mammalian cells. J Lipid Res. 1970 Sep;11(5):458–465. [PubMed] [Google Scholar]
  16. Kushlan M. C., Gollan J. L., Ma W. L., Ockner R. K. Sex differences in hepatic uptake of long chain fatty acids in single-pass perfused rat liver. J Lipid Res. 1981 Mar;22(3):431–436. [PubMed] [Google Scholar]
  17. Levi A. J., Gatmaitan Z., Arias I. M. Two hepatic cytoplasmic protein fractions, Y and Z, and their possible role in the hepatic uptake of bilirubin, sulfobromophthalein, and other anions. J Clin Invest. 1969 Nov;48(11):2156–2167. doi: 10.1172/JCI106182. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Macey R. I., Farmer R. E. Inhibition of water and solute permeability in human red cells. Biochim Biophys Acta. 1970 Jul 7;211(1):104–106. doi: 10.1016/0005-2736(70)90130-6. [DOI] [PubMed] [Google Scholar]
  19. Mahadevan S., Sauer F. Effect of trypsin, phospholipases, and membrane-impermeable reagents on the uptake of palmitic acid by isolated rat liver cells. Arch Biochem Biophys. 1974 Sep;164(1):185–193. doi: 10.1016/0003-9861(74)90021-6. [DOI] [PubMed] [Google Scholar]
  20. Mannaerts G. P., Debeer L. J., Thomas J., De Schepper P. J. Mitochondrial and peroxisomal fatty acid oxidation in liver homogenates and isolated hepatocytes from control and clofibrate-treated rats. J Biol Chem. 1979 Jun 10;254(11):4585–4595. [PubMed] [Google Scholar]
  21. Ockner R. K., Manning J. A. Fatty acid-binding protein in small intestine. Identification, isolation, and evidence for its role in cellular fatty acid transport. J Clin Invest. 1974 Aug;54(2):326–338. doi: 10.1172/JCI107768. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Ockner R. K., Manning J. A., Poppenhausen R. B., Ho W. K. A binding protein for fatty acids in cytosol of intestinal mucosa, liver, myocardium, and other tissues. Science. 1972 Jul 7;177(4043):56–58. doi: 10.1126/science.177.4043.56. [DOI] [PubMed] [Google Scholar]
  23. Paris S., Samuel D., Romey G., Ailhaud G. Uptake of fatty acids by cultured cardiac cells from chick embryo: evidence for a facilitation process without energy dependence. Biochimie. 1979;61(3):361–367. doi: 10.1016/s0300-9084(79)80129-7. [DOI] [PubMed] [Google Scholar]
  24. Petzinger E., Frimmer M. Driving forces in hepatocellular uptake of phalloidin and cholate. Biochim Biophys Acta. 1984 Dec 19;778(3):539–548. doi: 10.1016/0005-2736(84)90405-x. [DOI] [PubMed] [Google Scholar]
  25. RUDMAN D., KENDALL F. E. Bile acid content of human serum. II. The binding of cholanic acids by human plasma proteins. J Clin Invest. 1957 Apr;36(4):538–542. doi: 10.1172/JCI103451. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Reichen J., Paumgartner G. Kinetics of taurocholate uptake by the perfused rat liver. Gastroenterology. 1975 Jan;68(1):132–136. [PubMed] [Google Scholar]
  27. Renaud G., Foliot A., Infante R. Increased uptake of fatty acids by the isolated rat liver after raising the fatty acid binding protein concentration with clofibrate. Biochem Biophys Res Commun. 1978 Jan 30;80(2):327–334. doi: 10.1016/0006-291x(78)90680-0. [DOI] [PubMed] [Google Scholar]
  28. Samuel D., Paris S., Ailhaud G. Uptake and metabolism of fatty acids and analogues by cultured cardiac cells from chick embryo. Eur J Biochem. 1976 May 1;64(2):583–595. doi: 10.1111/j.1432-1033.1976.tb10338.x. [DOI] [PubMed] [Google Scholar]
  29. Scharschmidt B. F., Waggoner J. G., Berk P. D. Hepatic organic anion uptake in the rat. J Clin Invest. 1975 Nov;56(5):1280–1292. doi: 10.1172/JCI108204. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Schwarz L. R., Burr R., Schwenk M., Pfaff E., Greim H. Uptake of taurocholic acid into isolated rat-liver cells. Eur J Biochem. 1975 Jul 15;55(3):617–623. doi: 10.1111/j.1432-1033.1975.tb02199.x. [DOI] [PubMed] [Google Scholar]
  31. Spector A. A. Fatty acid binding to plasma albumin. J Lipid Res. 1975 May;16(3):165–179. [PubMed] [Google Scholar]
  32. Spector A. A., Fletcher J. E., Ashbrook J. D. Analysis of long-chain free fatty acid binding to bovine serum albumin by determination of stepwise equilibrium constants. Biochemistry. 1971 Aug 17;10(17):3229–3232. doi: 10.1021/bi00793a011. [DOI] [PubMed] [Google Scholar]
  33. Stremmel W., Berk P. D. Hepatocellular influx of [14C]oleate reflects membrane transport rather than intracellular metabolism or binding. Proc Natl Acad Sci U S A. 1986 May;83(10):3086–3090. doi: 10.1073/pnas.83.10.3086. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Stremmel W., Gerber M. A., Glezerov V., Thung S. N., Kochwa S., Berk P. D. Physicochemical and immunohistological studies of a sulfobromophthalein- and bilirubin-binding protein from rat liver plasma membranes. J Clin Invest. 1983 Jun;71(6):1796–1805. doi: 10.1172/JCI110935. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Stremmel W., Kochwa S., Berk P. D. Studies of oleate binding to rat liver plasma membranes. Biochem Biophys Res Commun. 1983 Apr 15;112(1):88–95. doi: 10.1016/0006-291x(83)91801-6. [DOI] [PubMed] [Google Scholar]
  36. Stremmel W., Lotz G., Strohmeyer G., Berk P. D. Identification, isolation, and partial characterization of a fatty acid binding protein from rat jejunal microvillous membranes. J Clin Invest. 1985 Mar;75(3):1068–1076. doi: 10.1172/JCI111769. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Stremmel W., Strohmeyer G., Borchard F., Kochwa S., Berk P. D. Isolation and partial characterization of a fatty acid binding protein in rat liver plasma membranes. Proc Natl Acad Sci U S A. 1985 Jan;82(1):4–8. doi: 10.1073/pnas.82.1.4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Stremmel W., Tavoloni N., Berk P. D. Uptake of bilirubin by the liver. Semin Liver Dis. 1983 Feb;3(1):1–10. doi: 10.1055/s-2008-1040666. [DOI] [PubMed] [Google Scholar]
  39. Tsuchiya H., Hayashi T., Sato M., Tatsumi M., Takagi N. Simultaneous separation and sensitive determination of free fatty acids in blood plasma by high-performance liquid chromatography. J Chromatogr. 1984 Jul 13;309(1):43–52. doi: 10.1016/0378-4347(84)80004-3. [DOI] [PubMed] [Google Scholar]
  40. Uptake of bromosulfophthalein by isolated liver cells. Eur J Biochem. 1976 Apr 15;64(1):189–197. [PubMed] [Google Scholar]
  41. Van Dyke R. W., Stephens J. E., Scharschmidt B. F. Bile acid transport in cultured rat hepatocytes. Am J Physiol. 1982 Dec;243(6):G484–G492. doi: 10.1152/ajpgi.1982.243.6.G484. [DOI] [PubMed] [Google Scholar]
  42. Weisiger R., Gollan J., Ockner R. Receptor for albumin on the liver cell surface may mediate uptake of fatty acids and other albumin-bound substances. Science. 1981 Mar 6;211(4486):1048–1051. doi: 10.1126/science.6258226. [DOI] [PubMed] [Google Scholar]
  43. Wosilait W. D., Nagy P. A method of computing drug distribution in plasma using stepwise association constants: clofibrate acid as an illustrative example. Comput Programs Biomed. 1976 Oct;6(3):142–148. doi: 10.1016/0010-468x(76)90020-9. [DOI] [PubMed] [Google Scholar]
  44. von Dippe P., Levy D. Characterization of the bile acid transport system in normal and transformed hepatocytes. Photoaffinity labeling of the taurocholate carrier protein. J Biol Chem. 1983 Jul 25;258(14):8896–8901. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES