Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1986 Jun;83(11):3634–3638. doi: 10.1073/pnas.83.11.3634

NMR studies of a complex of deuterated calmodulin with melittin.

S H Seeholzer, M Cohn, J A Putkey, A R Means, H L Crespi
PMCID: PMC323577  PMID: 3459148

Abstract

Completely deuterated calmodulin ([2H]CaM) has been prepared by expressing the chicken gene for CaM in Escherichia coli grown in 2H2O on a deuterated medium. The structural and dynamic properties of a 1:1 CaM/melittin (Mel) complex have been investigated by proton NMR. The spectrum of bound Mel is obtained directly from the spectrum of the [2H]CaM X Mel complex and is found to resemble strongly the spectrum of the helical species in methanol rather than that of the random coil species in water. The spectrum of bound CaM is obtained indirectly from the difference spectrum between [1H]CaM X Mel and [2H]CaM X Mel. Many changes are observed between free and bound CaM and they are distributed in both halves of the molecule, indicating that the binding of Mel affects the structure in both parts of the molecule. The rates of exchange of the amide protons of [2H]CaM with 2H2O were compared to those of [2H]CaM X Mel. The results showed that most, but not all, of the protons exchanged more slowly in the complex; after 40 hr, the residual peaks number 7 in CaM and greater than 20 in the complex. Again, changes in rates in CaM due to binding of Mel occurred in both halves of the molecule. The relative rates of amide proton exchange in CaM and its complex with Mel prove to be a sensitive criterion of differences in conformational stability and/or structure.

Full text

PDF
3634

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andersson A., Drakenberg T., Thulin E., Forsén S. A 113Cd and 1H NMR study of the interaction of calmodulin with D600, trifluoperazine and some other hydrophobic drugs. Eur J Biochem. 1983 Aug 15;134(3):459–465. doi: 10.1111/j.1432-1033.1983.tb07589.x. [DOI] [PubMed] [Google Scholar]
  2. Aulabaugh A., Niemczura W. P., Blundell T. L., Gibbons W. A. A study of the interactions between residues in the C-terminal half of calmodulin by one and two-dimensional NMR methods and computer modelling. Eur J Biochem. 1984 Sep 3;143(2):409–418. doi: 10.1111/j.1432-1033.1984.tb08388.x. [DOI] [PubMed] [Google Scholar]
  3. Babu Y. S., Sack J. S., Greenhough T. J., Bugg C. E., Means A. R., Cook W. J. Three-dimensional structure of calmodulin. Nature. 1985 May 2;315(6014):37–40. doi: 10.1038/315037a0. [DOI] [PubMed] [Google Scholar]
  4. Barnette M. S., Daly R., Weiss B. Inhibition of calmodulin activity by insect venom peptides. Biochem Pharmacol. 1983 Oct 1;32(19):2929–2933. doi: 10.1016/0006-2952(83)90398-2. [DOI] [PubMed] [Google Scholar]
  5. Blumenthal D. K., Takio K., Edelman A. M., Charbonneau H., Titani K., Walsh K. A., Krebs E. G. Identification of the calmodulin-binding domain of skeletal muscle myosin light chain kinase. Proc Natl Acad Sci U S A. 1985 May;82(10):3187–3191. doi: 10.1073/pnas.82.10.3187. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Comte M., Maulet Y., Cox J. A. Ca2+-dependent high-affinity complex formation between calmodulin and melittin. Biochem J. 1983 Jan 1;209(1):269–272. doi: 10.1042/bj2090269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Comte M., Maulet Y., Cox J. A. Ca2+-dependent high-affinity complex formation between calmodulin and melittin. Biochem J. 1983 Jan 1;209(1):269–272. doi: 10.1042/bj2090269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cox J. A., Comte M., Fitton J. E., DeGrado W. F. The interaction of calmodulin with amphiphilic peptides. J Biol Chem. 1985 Feb 25;260(4):2527–2534. [PubMed] [Google Scholar]
  9. Crespi H. L., Kostka A. G., Smith U. H. Proton Magnetic resonance observations of hydrogen exchange rates and secondary structure in algal ferredoxin. Biochem Biophys Res Commun. 1974 Dec 23;61(4):1407–1414. doi: 10.1016/s0006-291x(74)80440-7. [DOI] [PubMed] [Google Scholar]
  10. Dalgarno D. C., Klevit R. E., Levine B. A., Scott G. M., Williams R. J., Gergely J., Grabarek Z., Leavis P. C., Grand R. J., Drabikowski W. The nature of the trifluoperazine binding sites on calmodulin and troponin-C. Biochim Biophys Acta. 1984 Dec 7;791(2):164–172. doi: 10.1016/0167-4838(84)90006-2. [DOI] [PubMed] [Google Scholar]
  11. Dalgarno D. C., Klevit R. E., Levine B. A., Williams R. J., Dobrowolski Z., Drabikowski W. 1H NMR studies of calmodulin. Resonance assignments by use of tryptic fragments. Eur J Biochem. 1984 Jan 16;138(2):281–289. doi: 10.1111/j.1432-1033.1984.tb07913.x. [DOI] [PubMed] [Google Scholar]
  12. Englander S. W., Kallenbach N. R. Hydrogen exchange and structural dynamics of proteins and nucleic acids. Q Rev Biophys. 1983 Nov;16(4):521–655. doi: 10.1017/s0033583500005217. [DOI] [PubMed] [Google Scholar]
  13. Giedroc D. P., Ling N., Puett D. Identification of beta-endorphin residues 14-25 as a region involved in the inhibition of calmodulin-stimulated phosphodiesterase activity. Biochemistry. 1983 Nov 22;22(24):5584–5591. doi: 10.1021/bi00293a020. [DOI] [PubMed] [Google Scholar]
  14. Gopalakrishna R., Anderson W. B. Ca2+-induced hydrophobic site on calmodulin: application for purification of calmodulin by phenyl-Sepharose affinity chromatography. Biochem Biophys Res Commun. 1982 Jan 29;104(2):830–836. doi: 10.1016/0006-291x(82)90712-4. [DOI] [PubMed] [Google Scholar]
  15. Ikura M., Hiraoki T., Hikichi K., Mikuni T., Yazawa M., Yagi K. Nuclear magnetic resonance studies on calmodulin: calcium-induced conformational change. Biochemistry. 1983 May 10;22(10):2573–2579. doi: 10.1021/bi00279a039. [DOI] [PubMed] [Google Scholar]
  16. Ikura M., Minowa O., Hikichi K. Hydrogen bonding in the carboxyl-terminal half-fragment 78-148 of calmodulin as studied by two-dimensional nuclear magnetic resonance. Biochemistry. 1985 Jul 30;24(16):4264–4269. doi: 10.1021/bi00337a002. [DOI] [PubMed] [Google Scholar]
  17. King T. P., Sobotka A. K., Kochoumian L., Lichtenstein L. M. Allergens of honey bee venom. Arch Biochem Biophys. 1976 Feb;172(2):661–671. doi: 10.1016/0003-9861(76)90121-1. [DOI] [PubMed] [Google Scholar]
  18. Klevit R. E., Dalgarno D. C., Levine B. A., Williams R. J. 1H-NMR studies of calmodulin. The nature of the Ca2+-dependent conformational change. Eur J Biochem. 1984 Feb 15;139(1):109–114. doi: 10.1111/j.1432-1033.1984.tb07983.x. [DOI] [PubMed] [Google Scholar]
  19. Krebs J., Carafoli E. Influence of Ca2+ and trifluoperazine on the structure of calmodulin. A 1H-nuclear magnetic resonance study. Eur J Biochem. 1982 Jun;124(3):619–627. doi: 10.1111/j.1432-1033.1982.tb06639.x. [DOI] [PubMed] [Google Scholar]
  20. Lauterwein J., Brown L. R., Wüthrich K. High-resolution 1H-NMR studies of monomeric melittin in aqueous solution. Biochim Biophys Acta. 1980 Apr 25;622(2):219–230. doi: 10.1016/0005-2795(80)90033-1. [DOI] [PubMed] [Google Scholar]
  21. Lavialle F., Adams R. G., Levin I. W. Infrared spectroscopic study of the secondary structure of melittin in water, 2-chloroethanol, and phospholipid bilayer dispersions. Biochemistry. 1982 May 11;21(10):2305–2312. doi: 10.1021/bi00539a006. [DOI] [PubMed] [Google Scholar]
  22. Malencik D. A., Anderson S. R. Peptide binding by calmodulin and its proteolytic fragments and by troponin C. Biochemistry. 1984 May 22;23(11):2420–2428. doi: 10.1021/bi00306a016. [DOI] [PubMed] [Google Scholar]
  23. Maulet Y., Cox J. A. Structural changes in melittin and calmodulin upon complex formation and their modulation by calcium. Biochemistry. 1983 Nov 22;22(24):5680–5686. doi: 10.1021/bi00293a035. [DOI] [PubMed] [Google Scholar]
  24. McDowell L., Sanyal G., Prendergast F. G. Probable role of amphiphilicity in the binding of mastoparan to calmodulin. Biochemistry. 1985 Jun 4;24(12):2979–2984. doi: 10.1021/bi00333a026. [DOI] [PubMed] [Google Scholar]
  25. Means A. R., Tash J. S., Chafouleas J. G. Physiological implications of the presence, distribution, and regulation of calmodulin in eukaryotic cells. Physiol Rev. 1982 Jan;62(1):1–39. doi: 10.1152/physrev.1982.62.1.1. [DOI] [PubMed] [Google Scholar]
  26. O'Neil K. T., DeGrado W. F. A predicted structure of calmodulin suggests an electrostatic basis for its function. Proc Natl Acad Sci U S A. 1985 Aug;82(15):4954–4958. doi: 10.1073/pnas.82.15.4954. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Putkey J. A., Slaughter G. R., Means A. R. Bacterial expression and characterization of proteins derived from the chicken calmodulin cDNA and a calmodulin processed gene. J Biol Chem. 1985 Apr 25;260(8):4704–4712. [PubMed] [Google Scholar]
  28. Putkey J. A., Ts'ui K. F., Tanaka T., Lagacé L., Stein J. P., Lai E. C., Means A. R. Chicken calmodulin genes. A species comparison of cDNA sequences and isolation of a genomic clone. J Biol Chem. 1983 Oct 10;258(19):11864–11870. [PubMed] [Google Scholar]
  29. Schwarz G., Schwarz M., Schenck U. Effect of the special properties of monolayer cell preparations for automated cervical cytology on visual evaluation and classification. With an estimation of the number of cells required to be screened. Anal Quant Cytol. 1983 Sep;5(3):189–193. [PubMed] [Google Scholar]
  30. Seamon K. B. Calcium- and magnesium-dependent conformational states of calmodulin as determined by nuclear magnetic resonance. Biochemistry. 1980 Jan 8;19(1):207–215. doi: 10.1021/bi00542a031. [DOI] [PubMed] [Google Scholar]
  31. Walsh M. P., Hinkins S., Dabrowska R., Hartshorne D. J. Smooth muscle myosin light chain kinase. Methods Enzymol. 1983;99:279–288. doi: 10.1016/0076-6879(83)99063-8. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES