Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1986 Jun;83(11):3688–3692. doi: 10.1073/pnas.83.11.3688

A chemically explicit model for the molecular mechanism of the F1F0 H+-ATPase/ATP synthases.

G A Scarborough
PMCID: PMC323588  PMID: 2872673

Abstract

A general hypothesis for the molecular mechanism of membrane transport based on current knowledge of protein structure and the nature of ligand-induced protein conformational changes has recently been proposed [Scarborough, G. A. (1985) Microbiol. Rev. 49, 214-231]. According to this hypothesis, the essential reaction undergone by all proteinaceous transport catalysts is a ligand-induced hinge-bending-type conformational change that results in the transposition of binding-site residues from access on one side of the membrane to access on the other side. Subsequent release and/or alteration of the ligand or ligands that induce the conformational change facilitates the converse conformational change, which returns the binding-site residues to their original position. With this simple cyclic ligand-dependent gating process as a central feature, biochemically orthodox mechanisms for virtually all known transporters are readily conceived. In this article, a chemically explicit model for the molecular mechanism of the F1F0 H+-ATPase/ATP synthases of mitochondria, bacteria, and chloroplasts, formulated within the guidelines of this general transport paradigm, is presented. At least three points of potential interest arise from this exercise. First, with the aid of the model, it is possible to visualize how energy transduction catalyzed by these enzymes might proceed, with no major events left unspecified. Second, explicit possibilities as to the molecular nature of electric field effects on the transport process are raised. And finally, it is shown that enzyme conformational changes, energy-dependent binding-affinity changes, and several other related phenomena as well, need not be taken as evidence of "action at a distance" or indirect energy coupling mechanisms, as is sometimes assumed, because such events are also integral features of the mechanism presented, even though all of the key reactions proposed for both ATP-driven proton translocation and proton translocation-driven ATP synthesis occur at the enzyme active site.

Full text

PDF
3688

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amzel L. M., Pedersen P. L. Proton atpases: structure and mechanism. Annu Rev Biochem. 1983;52:801–824. doi: 10.1146/annurev.bi.52.070183.004101. [DOI] [PubMed] [Google Scholar]
  2. Boyer P. D., Kohlbrenner W. E., McIntosh D. B., Smith L. T., O'Neal C. C. ATP and ADP modulations of catalysis by F1 and Ca2+, Mg2+-ATPases. Ann N Y Acad Sci. 1982;402:65–83. doi: 10.1111/j.1749-6632.1982.tb25732.x. [DOI] [PubMed] [Google Scholar]
  3. Cox G. B., Jans D. A., Fimmel A. L., Gibson F., Hatch L. Hypothesis. The mechanism of ATP synthase. Conformational change by rotation of the beta-subunit. Biochim Biophys Acta. 1984 Dec 17;768(3-4):201–208. doi: 10.1016/0304-4173(84)90016-8. [DOI] [PubMed] [Google Scholar]
  4. Cross R. L. The mechanism and regulation of ATP synthesis by F1-ATPases. Annu Rev Biochem. 1981;50:681–714. doi: 10.1146/annurev.bi.50.070181.003341. [DOI] [PubMed] [Google Scholar]
  5. Feldman R. I., Sigman D. S. The synthesis of ATP by the membrane-bound ATP synthase complex from medium 32Pi under completely uncoupled conditions. J Biol Chem. 1983 Oct 25;258(20):12178–12183. [PubMed] [Google Scholar]
  6. Fersht A. R., Shi J. P., Knill-Jones J., Lowe D. M., Wilkinson A. J., Blow D. M., Brick P., Carter P., Waye M. M., Winter G. Hydrogen bonding and biological specificity analysed by protein engineering. Nature. 1985 Mar 21;314(6008):235–238. doi: 10.1038/314235a0. [DOI] [PubMed] [Google Scholar]
  7. Fillingame R. H., Peters L. K., White L. K., Mosher M. E., Paule C. R. Mutations altering aspartyl-61 of the omega subunit (uncE protein) of Escherichia coli H+ -ATPase differ in effect on coupled ATP hydrolysis. J Bacteriol. 1984 Jun;158(3):1078–1083. doi: 10.1128/jb.158.3.1078-1083.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fillingame R. H. The proton-translocating pumps of oxidative phosphorylation. Annu Rev Biochem. 1980;49:1079–1113. doi: 10.1146/annurev.bi.49.070180.005243. [DOI] [PubMed] [Google Scholar]
  9. Futai M., Kanazawa H. Structure and function of proton-translocating adenosine triphosphatase (F0F1): biochemical and molecular biological approaches. Microbiol Rev. 1983 Sep;47(3):285–312. doi: 10.1128/mr.47.3.285-312.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hoppe J., Schairer H. U., Friedl P., Sebald W. An Asp-Asn substitution in the proteolipid subunit of the ATP-synthase from Escherichia coli leads to a non-functional proton channel. FEBS Lett. 1982 Aug 16;145(1):21–29. doi: 10.1016/0014-5793(82)81198-8. [DOI] [PubMed] [Google Scholar]
  11. Kagawa Y., Sone N., Hirata H., Yoshida M. Structure and function of H+-ATPase. J Bioenerg Biomembr. 1979 Aug;11(3-4):39–78. doi: 10.1007/BF00743196. [DOI] [PubMed] [Google Scholar]
  12. Knowles J. R. Enzyme-catalyzed phosphoryl transfer reactions. Annu Rev Biochem. 1980;49:877–919. doi: 10.1146/annurev.bi.49.070180.004305. [DOI] [PubMed] [Google Scholar]
  13. Kozlov I. A., Skulachev V. P. H+-Adenosine triphosphatase and membrane energy coupling. Biochim Biophys Acta. 1977 Jun 21;463(1):29–89. doi: 10.1016/0304-4173(77)90003-9. [DOI] [PubMed] [Google Scholar]
  14. Lienhard G. E. Enzymatic catalysis and transition-state theory. Science. 1973 Apr 15;180(4082):149–154. doi: 10.1126/science.180.4082.149. [DOI] [PubMed] [Google Scholar]
  15. Läuger P. A channel mechanism for electrogenic ion pumps. Biochim Biophys Acta. 1979 Mar 23;552(1):143–161. doi: 10.1016/0005-2736(79)90253-0. [DOI] [PubMed] [Google Scholar]
  16. Makinen M. W., Kuo L. C., Dymowski J. J., Jaffer S. Catalytic role of the metal ion of carboxypeptidase A in ester hydrolysis. J Biol Chem. 1979 Jan 25;254(2):356–366. [PubMed] [Google Scholar]
  17. Maloney P. C. Energy coupling to ATP synthesis by the proton-translocating ATPase. J Membr Biol. 1982;67(1):1–12. doi: 10.1007/BF01868643. [DOI] [PubMed] [Google Scholar]
  18. Mitchell P., Koppenol W. H. Chemiosmotic ATPase mechanisms. Ann N Y Acad Sci. 1982;402:584–601. doi: 10.1111/j.1749-6632.1982.tb25785.x. [DOI] [PubMed] [Google Scholar]
  19. Mitchell P. Molecular mechanics of protonmotive F0F1 ATPases. Rolling well and turnstile hypothesis. FEBS Lett. 1985 Mar 11;182(1):1–7. doi: 10.1016/0014-5793(85)81142-x. [DOI] [PubMed] [Google Scholar]
  20. Mitchell P. The Ninth Sir Hans Krebs Lecture. Compartmentation and communication in living systems. Ligand conduction: a general catalytic principle in chemical, osmotic and chemiosmotic reaction systems. Eur J Biochem. 1979 Mar 15;95(1):1–20. doi: 10.1111/j.1432-1033.1979.tb12934.x. [DOI] [PubMed] [Google Scholar]
  21. Ovchinnikov YuA Ion channels: structure and function. Biochem Soc Symp. 1981;(46):103–137. [PubMed] [Google Scholar]
  22. Pearl L., Blundell T. The active site of aspartic proteinases. FEBS Lett. 1984 Aug 20;174(1):96–101. doi: 10.1016/0014-5793(84)81085-6. [DOI] [PubMed] [Google Scholar]
  23. Penefsky H. S. Mechanism of inhibition of mitochondrial adenosine triphosphatase by dicyclohexylcarbodiimide and oligomycin: relationship to ATP synthesis. Proc Natl Acad Sci U S A. 1985 Mar;82(6):1589–1593. doi: 10.1073/pnas.82.6.1589. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Pflugrath J. W., Quiocho F. A. Sulphate sequestered in the sulphate-binding protein of Salmonella typhimurium is bound solely by hydrogen bonds. Nature. 1985 Mar 21;314(6008):257–260. doi: 10.1038/314257a0. [DOI] [PubMed] [Google Scholar]
  25. Reynolds J. A., Johnson E. A., Tanford C. Incorporation of membrane potential into theoretical analysis of electrogenic ion pumps. Proc Natl Acad Sci U S A. 1985 Oct;82(20):6869–6873. doi: 10.1073/pnas.82.20.6869. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Scarborough G. A. Binding energy, conformational change, and the mechanism of transmembrane solute movements. Microbiol Rev. 1985 Sep;49(3):214–231. doi: 10.1128/mr.49.3.214-231.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Schwab W. G., Komor E. A possible mechanistic role of the membrane potential in proton-sugar cotransport of Chlorella. FEBS Lett. 1978 Mar 1;87(1):157–160. doi: 10.1016/0014-5793(78)80156-2. [DOI] [PubMed] [Google Scholar]
  28. Senior A. E., Wise J. G. The proton-ATPase of bacteria and mitochondria. J Membr Biol. 1983;73(2):105–124. doi: 10.1007/BF01870434. [DOI] [PubMed] [Google Scholar]
  29. Tanford C. Simple model for the chemical potential change of a transported ion in active transport. Proc Natl Acad Sci U S A. 1982 May;79(9):2882–2884. doi: 10.1073/pnas.79.9.2882. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Walker J. E., Saraste M., Gay N. J. The unc operon. Nucleotide sequence, regulation and structure of ATP-synthase. Biochim Biophys Acta. 1984 Sep 6;768(2):164–200. doi: 10.1016/0304-4173(84)90003-x. [DOI] [PubMed] [Google Scholar]
  31. Woodhull A. M. Ionic blockage of sodium channels in nerve. J Gen Physiol. 1973 Jun;61(6):687–708. doi: 10.1085/jgp.61.6.687. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES