Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1986 Jun;83(11):4086–4088. doi: 10.1073/pnas.83.11.4086

A unique serotonin receptor in choroid plexus is linked to phosphatidylinositol turnover.

P J Conn, E Sanders-Bush, B J Hoffman, P R Hartig
PMCID: PMC323671  PMID: 2940597

Abstract

A novel serotonergic binding site, the 5-HT1C site, has been characterized recently in choroid plexus and several brain regions. The biochemical and physiological roles of this site have not been previously described. In this report we show that serotonin (5-hydroxytryptamine, 5-HT) stimulates phosphatidylinositol turnover in rat choroid plexus. The pharmacology of serotonin-stimulated phosphatidylinositol hydrolysis in choroid plexus was compared to the pharmacology in cerebral cortex, where this response is mediated by the serotonin 5-HT2 receptor. Serotonin increased phosphatidylinositol turnover in choroid plexus by 6-fold and in cerebral cortex by 2.5-fold. Serotonin was greater than 10-fold more potent in choroid plexus (EC50 = 46 nM) than in cerebral cortex (EC50 = 540 nM). The serotonin antagonists ketanserin, mianserin, and spiperone inhibited the response in the two tissues with different potencies. In cerebral cortex all three exhibited nanomolar affinities consistent with their potencies at the 5-HT2 site. In choroid plexus, however, the rank order (mianserin greater than ketanserin much greater than spiperone) and absolute potencies were consistent with binding to the 5-HT1C site. These data suggest that the 5-HT1C site in choroid plexus is a functional receptor that utilizes phosphatidylinositol turnover as its biochemical effector system.

Full text

PDF
4086

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aghajanian G. K., Gallager D. W. Raphe origin of serotonergic nerves terminating in the cerebral ventricles. Brain Res. 1975 May 2;88(2):221–231. doi: 10.1016/0006-8993(75)90386-8. [DOI] [PubMed] [Google Scholar]
  2. Cheng Y., Prusoff W. H. Relationship between the inhibition constant (K1) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem Pharmacol. 1973 Dec 1;22(23):3099–3108. doi: 10.1016/0006-2952(73)90196-2. [DOI] [PubMed] [Google Scholar]
  3. Conn P. J., Sanders-Bush E. Biochemical characterization of serotonin stimulated phosphoinositide turnover. Life Sci. 1986 Feb 17;38(7):663–669. doi: 10.1016/0024-3205(86)90060-3. [DOI] [PubMed] [Google Scholar]
  4. Conn P. J., Sanders-Bush E. Selective 5HT-2 antagonists inhibit serotonin stimulated phosphatidylinositol metabolism in cerebral cortex. Neuropharmacology. 1984 Aug;23(8):993–996. doi: 10.1016/0028-3908(84)90017-0. [DOI] [PubMed] [Google Scholar]
  5. Conn P. J., Sanders-Bush E. Serotonin-stimulated phosphoinositide turnover: mediation by the S2 binding site in rat cerebral cortex but not in subcortical regions. J Pharmacol Exp Ther. 1985 Jul;234(1):195–203. [PubMed] [Google Scholar]
  6. Crook R. B., Kasagami H., Prusiner S. B. Culture and characterization of epithelial cells from bovine choroid plexus. J Neurochem. 1981 Oct;37(4):845–854. doi: 10.1111/j.1471-4159.1981.tb04470.x. [DOI] [PubMed] [Google Scholar]
  7. Kendall D. A., Nahorski S. R. 5-Hydroxytryptamine-stimulated inositol phospholipid hydrolysis in rat cerebral cortex slices: pharmacological characterization and effects of antidepressants. J Pharmacol Exp Ther. 1985 May;233(2):473–479. [PubMed] [Google Scholar]
  8. Lindvall M., Edvinsson L., Owman C. Effect of sympathomimetic drugs and corresponding receptor antagonists on the rate of cerebrospinal fluid production. Exp Neurol. 1979 Apr;64(1):132–145. doi: 10.1016/0014-4886(79)90010-4. [DOI] [PubMed] [Google Scholar]
  9. McComb J. G. Recent research into the nature of cerebrospinal fluid formation and absorption. J Neurosurg. 1983 Sep;59(3):369–383. doi: 10.3171/jns.1983.59.3.0369. [DOI] [PubMed] [Google Scholar]
  10. Moskowitz M. A., Liebmann J. E., Reinhard J. F., Jr, Schlosberg A. Raphe origin of serotonin-containing neurons within choroid plexus of the rat. Brain Res. 1979 Jun 29;169(3):590–594. doi: 10.1016/0006-8993(79)90410-4. [DOI] [PubMed] [Google Scholar]
  11. Nakamura S., Moriyasu N. [Nerve fibers and nerve endings in the choroid plexus--electron microscopic study (author's transl)]. No To Shinkei. 1978 Mar;30(3):259–266. [PubMed] [Google Scholar]
  12. Napoleone P., Sancesario G., Amenta F. Indoleaminergic innervation of rat choroid plexus: a fluorescence histochemical study. Neurosci Lett. 1982 Dec 30;34(2):143–147. doi: 10.1016/0304-3940(82)90166-5. [DOI] [PubMed] [Google Scholar]
  13. Nathanson J. A. Beta-adrenergic-sensitive adenylate cyclase in secretory cells of choroid plexus. Science. 1979 May 25;204(4395):843–844. doi: 10.1126/science.220707. [DOI] [PubMed] [Google Scholar]
  14. Pazos A., Hoyer D., Palacios J. M. The binding of serotonergic ligands to the porcine choroid plexus: characterization of a new type of serotonin recognition site. Eur J Pharmacol. 1984 Nov 27;106(3):539–546. doi: 10.1016/0014-2999(84)90057-8. [DOI] [PubMed] [Google Scholar]
  15. Roth B. L., Nakaki T., Chuang D. M., Costa E. Aortic recognition sites for serotonin (5HT) are coupled to phospholipase C and modulate phosphatidylinositol turnover. Neuropharmacology. 1984 Oct;23(10):1223–1225. doi: 10.1016/0028-3908(84)90244-2. [DOI] [PubMed] [Google Scholar]
  16. Segal M. B., Pollay M. The secretion of cerebrospinal fluid. Exp Eye Res. 1977;25 (Suppl):127–148. doi: 10.1016/s0014-4835(77)80012-2. [DOI] [PubMed] [Google Scholar]
  17. Sills M. A., Wolfe B. B., Frazer A. Determination of selective and nonselective compounds for the 5-HT 1A and 5-HT 1B receptor subtypes in rat frontal cortex. J Pharmacol Exp Ther. 1984 Dec;231(3):480–487. [PubMed] [Google Scholar]
  18. Yagaloff K. A., Hartig P. R. 125I-lysergic acid diethylamide binds to a novel serotonergic site on rat choroid plexus epithelial cells. J Neurosci. 1985 Dec;5(12):3178–3183. doi: 10.1523/JNEUROSCI.05-12-03178.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Yagaloff K. A., Hartig P. R. Solubilization and characterization of the serotonin 5-HT1c site from pig choroid plexus. Mol Pharmacol. 1986 Feb;29(2):120–125. [PubMed] [Google Scholar]
  20. de Chaffoy de Courcelles D., Leysen J. E., De Clerck F., Van Belle H., Janssen P. A. Evidence that phospholipid turnover is the signal transducing system coupled to serotonin-S2 receptor sites. J Biol Chem. 1985 Jun 25;260(12):7603–7608. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES