Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1986 Jun;83(11):4094–4098. doi: 10.1073/pnas.83.11.4094

Induction of nerve growth factor receptor in Schwann cells after axotomy.

M Taniuchi, H B Clark, E M Johnson Jr
PMCID: PMC323673  PMID: 3012551

Abstract

We have discovered that axotomy of sciatic nerve induces Schwann cells distal to the lesion to express de novo, or at greatly increased levels, receptors for nerve growth factor (NGF). Surgical transection of sciatic nerve was performed on adult Sprague-Dawley rats, and, at various times after the operation, the following tissues were dissected for quantitation of NGF receptor: L4 and L5 dorsal root ganglia, sciatic nerve proximal to the transection, sciatic nerve distal to the transection, tibialis anterior muscle, and skin of the dorsum of the foot. The NGF receptor content of these samples was determined by labeling receptor molecules with radioiodinated NGF (125I-NGF) and then specifically immunoprecipitating the 125I-NGF-receptor complexes with 192-IgG, a monoclonal antibody directed against the rat NGF receptor. We observed a time-dependent increase in the amount of radioligand-labeled NGF receptor proteins found in the distal segment of transected sciatic nerve; by 7 days the density of receptor (crosslinked 125I-NGF molecules per mg of homogenate protein) had increased at least 50-fold. The number of receptor molecules in tibialis anterior muscle and dorsal foot skin, two structures denervated by the transection, also increased, with time courses parallel to that of distal sciatic nerve. There was little increase in the density of NGF receptors in the sciatic nerve proximal to the lesion and in the dorsal root ganglia. Immunohistochemical examination of the distal portion of transected sciatic nerve and of the muscle, with 192-IgG as the primary ligand, revealed prominent and exclusive staining of apparently all Schwann cells of the endoneurium, indicating that these peripheral neuroglial cells were expressing NGF receptors. These results show that axonal damage can induce the expression of NGF receptors in the population of sheath cells thought to promote neuronal regeneration. This dramatic increase in NGF receptors may be a mechanism to facilitate the regeneration of NGF-responsive neurons.

Full text

PDF
4094

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. AXELSSON J., THESLEFF S. A study of supersensitivity in denervated mammalian skeletal muscle. J Physiol. 1959 Jun 23;147(1):178–193. doi: 10.1113/jphysiol.1959.sp006233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bocchini V., Angeletti P. U. The nerve growth factor: purification as a 30,000-molecular-weight protein. Proc Natl Acad Sci U S A. 1969 Oct;64(2):787–794. doi: 10.1073/pnas.64.2.787. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Buxser S. E., Watson L., Johnson G. L. A comparison of binding properties and structure of NGF receptor on PC12 pheochromocytoma and A875 melanoma cells. J Cell Biochem. 1983;22(4):219–233. doi: 10.1002/jcb.240220404. [DOI] [PubMed] [Google Scholar]
  4. Chandler C. E., Parsons L. M., Hosang M., Shooter E. M. A monoclonal antibody modulates the interaction of nerve growth factor with PC12 cells. J Biol Chem. 1984 Jun 10;259(11):6882–6889. [PubMed] [Google Scholar]
  5. Chandler L. P., Chandler C. E., Hosang M., Shooter E. M. A monoclonal antibody which inhibits epidermal growth factor binding has opposite effects on the biological action of epidermal growth factor in different cells. J Biol Chem. 1985 Mar 25;260(6):3360–3367. [PubMed] [Google Scholar]
  6. Clark H. B., Minesky J. J., Agrawal D., Agrawal H. C. Myelin basic protein and P2 protein are not immunohistochemical markers for Schwann cell neoplasms. A comparative study using antisera to S-100, P2, and myelin basic proteins. Am J Pathol. 1985 Oct;121(1):96–101. [PMC free article] [PubMed] [Google Scholar]
  7. Costrini N. V., Bradshaw R. A. Binding characteristics and apparent molecular size of detergent solubilized nerve growth factor receptor of sympathetic ganglia. Proc Natl Acad Sci U S A. 1979 Jul;76(7):3242–3245. doi: 10.1073/pnas.76.7.3242. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. David S., Aguayo A. J. Axonal elongation into peripheral nervous system "bridges" after central nervous system injury in adult rats. Science. 1981 Nov 20;214(4523):931–933. doi: 10.1126/science.6171034. [DOI] [PubMed] [Google Scholar]
  9. Gundersen R. W., Barrett J. N. Characterization of the turning response of dorsal root neurites toward nerve growth factor. J Cell Biol. 1980 Dec;87(3 Pt 1):546–554. doi: 10.1083/jcb.87.3.546. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gundersen R. W. Sensory neurite growth cone guidance by substrate adsorbed nerve growth factor. J Neurosci Res. 1985;13(1-2):199–212. doi: 10.1002/jnr.490130114. [DOI] [PubMed] [Google Scholar]
  11. Hosang M., Shooter E. M. Molecular characteristics of nerve growth factor receptors on PC12 cells. J Biol Chem. 1985 Jan 10;260(1):655–662. [PubMed] [Google Scholar]
  12. Kromer L. F., Cornbrooks C. J. Transplants of Schwann cell cultures promote axonal regeneration in the adult mammalian brain. Proc Natl Acad Sci U S A. 1985 Sep;82(18):6330–6334. doi: 10.1073/pnas.82.18.6330. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  14. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  15. Landreth G. E., Shooter E. M. Nerve growth factor receptors on PC12 cells: ligand-induced conversion from low- to high-affinity states. Proc Natl Acad Sci U S A. 1980 Aug;77(8):4751–4755. doi: 10.1073/pnas.77.8.4751. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Letourneau P. C. Chemotactic response of nerve fiber elongation to nerve growth factor. Dev Biol. 1978 Sep;66(1):183–196. doi: 10.1016/0012-1606(78)90283-x. [DOI] [PubMed] [Google Scholar]
  17. Manthorpe M., Engvall E., Ruoslahti E., Longo F. M., Davis G. E., Varon S. Laminin promotes neuritic regeneration from cultured peripheral and central neurons. J Cell Biol. 1983 Dec;97(6):1882–1890. doi: 10.1083/jcb.97.6.1882. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Marchalonis J. J. An enzymic method for the trace iodination of immunoglobulins and other proteins. Biochem J. 1969 Jun;113(2):299–305. doi: 10.1042/bj1130299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Richardson P. M., McGuinness U. M., Aguayo A. J. Axons from CNS neurons regenerate into PNS grafts. Nature. 1980 Mar 20;284(5753):264–265. doi: 10.1038/284264a0. [DOI] [PubMed] [Google Scholar]
  20. Rogers S. L., Letourneau P. C., Palm S. L., McCarthy J., Furcht L. T. Neurite extension by peripheral and central nervous system neurons in response to substratum-bound fibronectin and laminin. Dev Biol. 1983 Jul;98(1):212–220. doi: 10.1016/0012-1606(83)90350-0. [DOI] [PubMed] [Google Scholar]
  21. Rohrer H., Sommer I. Simultaneous expression of neuronal and glial properties by chick ciliary ganglion cells during development. J Neurosci. 1983 Aug;3(8):1683–1693. doi: 10.1523/JNEUROSCI.03-08-01683.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Rush R. A. Immunohistochemical localization of endogenous nerve growth factor. Nature. 1984 Nov 22;312(5992):364–367. doi: 10.1038/312364a0. [DOI] [PubMed] [Google Scholar]
  23. Schwab M. E., Thoenen H. Dissociated neurons regenerate into sciatic but not optic nerve explants in culture irrespective of neurotrophic factors. J Neurosci. 1985 Sep;5(9):2415–2423. doi: 10.1523/JNEUROSCI.05-09-02415.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Stefansson K., Wollmann R. L., Moore B. W. Distribution of S-100 protein outside the central nervous system. Brain Res. 1982 Feb 25;234(2):309–317. doi: 10.1016/0006-8993(82)90871-x. [DOI] [PubMed] [Google Scholar]
  25. Sutter A., Riopelle R. J., Harris-Warrick R. M., Shooter E. M. Nerve growth factor receptors. Characterization of two distinct classes of binding sites on chick embryo sensory ganglia cells. J Biol Chem. 1979 Jul 10;254(13):5972–5982. [PubMed] [Google Scholar]
  26. Taniuchi M., Johnson E. M., Jr Characterization of the binding properties and retrograde axonal transport of a monoclonal antibody directed against the rat nerve growth factor receptor. J Cell Biol. 1985 Sep;101(3):1100–1106. doi: 10.1083/jcb.101.3.1100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Taniuchi M., Schweitzer J. B., Johnson E. M., Jr Nerve growth factor receptor molecules in rat brain. Proc Natl Acad Sci U S A. 1986 Mar;83(6):1950–1954. doi: 10.1073/pnas.83.6.1950. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Thoenen H., Barde Y. A. Physiology of nerve growth factor. Physiol Rev. 1980 Oct;60(4):1284–1335. doi: 10.1152/physrev.1980.60.4.1284. [DOI] [PubMed] [Google Scholar]
  29. Yankner B. A., Shooter E. M. Nerve growth factor in the nucleus: interaction with receptors on the nuclear membrane. Proc Natl Acad Sci U S A. 1979 Mar;76(3):1269–1273. doi: 10.1073/pnas.76.3.1269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Yankner B. A., Shooter E. M. The biology and mechanism of action of nerve growth factor. Annu Rev Biochem. 1982;51:845–868. doi: 10.1146/annurev.bi.51.070182.004213. [DOI] [PubMed] [Google Scholar]
  31. Zimmermann A., Sutter A., Shooter E. M. Monoclonal antibodies against beta nerve growth factor and their effects on receptor binding and biological activity. Proc Natl Acad Sci U S A. 1981 Jul;78(7):4611–4615. doi: 10.1073/pnas.78.7.4611. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Zimmermann A., Sutter A. beta-Nerve growth factor (beta NGF) receptors on glial cells. Cell-cell interaction between neurones and Schwann cells in cultures of chick sensory ganglia. EMBO J. 1983;2(6):879–885. doi: 10.1002/j.1460-2075.1983.tb01517.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES