Abstract
Four monoclonal antibodies were identified by their ability to bind to 125I-labeled insulin covalently linked to a cytosolic insulin-degrading enzyme from human erythrocytes. All four antibodies were also found to remove more than 90% of the insulin-degrading activity from erythrocyte extracts. These antibodies were shown to be directed to different sites on the enzyme by mapping studies and by their various properties. Two antibodies recognized the insulin-degrading enzyme from rat liver; one inhibited the erythrocyte enzyme directly; and two recognized the enzyme after gel electrophoresis and transfer to nitrocellulose filters. By this latter procedure and immunoprecipitation from metabolically labeled cells, the enzyme from a variety of tissues was shown to be composed of a single polypeptide chain of apparent Mr 110,000. Finally, these monoclonal antibodies were microinjected into the cytoplasm of a human hepatoma cell line to assess the contribution of this enzyme to insulin degradation in the intact cell. In five separate experiments, preloading of cells with these monoclonal antibodies resulted in an inhibition of insulin degradation of 18-54% (average 39%) and increased the amount of 125I-labeled insulin associated with the cells. In contrast, microinjection of control antibody or an extraneous monoclonal antibody had no effect on insulin degradation or on the amount of insulin associated with the cells. Moreover, the monoclonal antibodies to the insulin-degrading enzyme caused no significant inhibition of degradation of another molecule, low density lipoprotein. Thus, these results support a role for this enzyme in insulin degradation in the intact cell.
Full text
PDF




Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Assoian R. K., Tager H. S. Peptide intermediates in the cellular metabolism of insulin. J Biol Chem. 1982 Aug 10;257(15):9078–9085. [PubMed] [Google Scholar]
- Barnard G. F., Erickson S. K., Cooper A. D. Lipoprotein metabolism by rat hepatomas. Studies on the etiology of defective dietary feedback inhibition of cholesterol synthesis. J Clin Invest. 1984 Jul;74(1):173–184. doi: 10.1172/JCI111399. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blazar B. R., Whitley C. B., Kitabchi A. E., Tsai M. Y., Santiago J., White N., Stentz F. B., Brown D. M. In vivo chloroquine-induced inhibition of insulin degradation in a diabetic patient with severe insulin resistance. Diabetes. 1984 Dec;33(12):1133–1137. doi: 10.2337/diab.33.12.1133. [DOI] [PubMed] [Google Scholar]
- Brown M. S., Goldstein J. L. Receptor-mediated endocytosis: insights from the lipoprotein receptor system. Proc Natl Acad Sci U S A. 1979 Jul;76(7):3330–3337. doi: 10.1073/pnas.76.7.3330. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brush J. S., Jering H. The importance of proteolysis as the initial step of insulin degradation in rat liver homogenates. Endocrinology. 1979 Jun;104(6):1639–1643. doi: 10.1210/endo-104-6-1639. [DOI] [PubMed] [Google Scholar]
- Brush J. S., Nascimento C. G. Studies of the properties of the insulin protease of rat liver. Biochim Biophys Acta. 1982 Jun 24;704(3):398–402. doi: 10.1016/0167-4838(82)90060-7. [DOI] [PubMed] [Google Scholar]
- Brush J. S. Purification and characterizatoion of a protease with specificity for insulin from rat muscle. Diabetes. 1971 Mar;20(3):140–145. [PubMed] [Google Scholar]
- Duckworth W. C., Heinemann M. A., Kitabchi A. E. Purification of insulin-specific protease by affinity chromatography. Proc Natl Acad Sci U S A. 1972 Dec;69(12):3698–3702. doi: 10.1073/pnas.69.12.3698. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Duckworth W. C. Insulin and glucagon degradation by the kidney. II. Characterization of the mechanisms at neutral pH. Biochim Biophys Acta. 1976 Jul 21;437(2):531–542. doi: 10.1016/0304-4165(76)90021-0. [DOI] [PubMed] [Google Scholar]
- Duckworth W. C., Kitabchi A. E. Insulin metabolism and degradation. Endocr Rev. 1981 Spring;2(2):210–233. doi: 10.1210/edrv-2-2-210. [DOI] [PubMed] [Google Scholar]
- Duckworth W. C., Runyan K. R., Wright R. K., Halban P. A., Solomon S. S. Insulin degradation by hepatocytes in primary culture. Endocrinology. 1981 Apr;108(4):1142–1147. doi: 10.1210/endo-108-4-1142. [DOI] [PubMed] [Google Scholar]
- Duckworth W. C., Stentz F. B., Heinemann M., Kitabchi A. E. Initial site of insulin cleavage by insulin protease. Proc Natl Acad Sci U S A. 1979 Feb;76(2):635–639. doi: 10.1073/pnas.76.2.635. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Freidenberg G. R., White N., Cataland S., O'Dorisio T. M., Sotos J. F., Santiago J. V. Diabetes responsive to intravenous but not subcutaneous insulin: effectiveness of aprotinin. N Engl J Med. 1981 Aug 13;305(7):363–368. doi: 10.1056/NEJM198108133050702. [DOI] [PubMed] [Google Scholar]
- Gliemann J., Sonne O. Uptake and degradation of insulin and alpha 2-macroglobulin-trypsin complex in rat adipocytes. Evidence for different pathways. Biochim Biophys Acta. 1985 Apr 22;845(1):124–130. doi: 10.1016/0167-4889(85)90063-1. [DOI] [PubMed] [Google Scholar]
- Goldstein B. J., Livingston J. N. An evaluation of the importance of lysosomal and neutral cytosol proteases in insulin degradation by adipocytes. Endocrinology. 1981 Mar;108(3):953–961. doi: 10.1210/endo-108-3-953. [DOI] [PubMed] [Google Scholar]
- Goldstein B. J., Livingston J. N. Insulin degradation by adipose tissue. Studies at several levels of cellular organization. Biochem J. 1980 Jan 15;186(1):351–360. doi: 10.1042/bj1860351. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hammons G. T., Smith R. M., Jarett L. Inhibition by bacitracin of rat adipocyte plasma membrane degradation of 125I-insulin is associated with an increase in plasma membrane bound insulin and a potentiation of glucose oxidation by adipocytes. J Biol Chem. 1982 Oct 10;257(19):11563–11570. [PubMed] [Google Scholar]
- Kahn C. R., Baird K. The fate of insulin bound to adipocytes. Evidence for compartmentalization and processing. J Biol Chem. 1978 Jul 25;253(14):4900–4906. [PubMed] [Google Scholar]
- Kirschner R. J., Goldberg A. L. A high molecular weight metalloendoprotease from the cytosol of mammalian cells. J Biol Chem. 1983 Jan 25;258(2):967–976. [PubMed] [Google Scholar]
- Kitabchi A. E., Stentz F. B., Cole C., Duckworth W. C. Accelerated insulin degradation: an alternate mechanism for insulin resistance. Diabetes Care. 1979 Sep-Oct;2(5):414–417. doi: 10.2337/diacare.2.5.414. [DOI] [PubMed] [Google Scholar]
- Knowles B. B., Howe C. C., Aden D. P. Human hepatocellular carcinoma cell lines secrete the major plasma proteins and hepatitis B surface antigen. Science. 1980 Jul 25;209(4455):497–499. doi: 10.1126/science.6248960. [DOI] [PubMed] [Google Scholar]
- Kolb H. J., Standl E. Purification to homogeneity of an insulin-degrading enzyme from human erythrocytes. Hoppe Seylers Z Physiol Chem. 1980 Jul;361(7):1029–1039. doi: 10.1515/bchm2.1980.361.2.1029. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- MIRSKY I. A. Insulinase, insulinase-inhibitors, and diabetes mellitus. Recent Prog Horm Res. 1957;13:429–471. [PubMed] [Google Scholar]
- Maberly G. F., Wait G. A., Kilpatrick J. A., Loten E. G., Gain K. R., Stewart R. D., Eastman C. J. Evidence for insulin degradation by muscle and fat tissue in an insulin resistant diabetic patient. Diabetologia. 1982 Oct;23(4):333–336. doi: 10.1007/BF00253740. [DOI] [PubMed] [Google Scholar]
- McElduff A., Eastman C. J., Haynes S. P., Bowen K. M. Apparent insulin resistance due to abnormal enzymatic insulin degradation: a new mechanism for insulin resistance. Aust N Z J Med. 1980 Feb;10(1):56–61. doi: 10.1111/j.1445-5994.1980.tb03421.x. [DOI] [PubMed] [Google Scholar]
- Misbin R. I., Almira E. C., Buynitzky S. J. Insulin metabolism in rat hepatocytes. Evidence for generation of an insulin fragment missing a portion of the B chain involved in receptor binding. J Biol Chem. 1983 Feb 25;258(4):2157–2162. [PubMed] [Google Scholar]
- Morgan D. O., Roth R. A. Plate binding assay for monoclonal anti-receptor antibodies. Endocrinology. 1985 Mar;116(3):1224–1226. doi: 10.1210/endo-116-3-1224. [DOI] [PubMed] [Google Scholar]
- Neal G. W., Kitabchi A. E. Insulin degradation by human skeletal muscle. Biochim Biophys Acta. 1982 Nov 24;719(2):259–266. doi: 10.1016/0304-4165(82)90097-6. [DOI] [PubMed] [Google Scholar]
- Okada C. Y., Rechsteiner M. Introduction of macromolecules into cultured mammalian cells by osmotic lysis of pinocytic vesicles. Cell. 1982 May;29(1):33–41. doi: 10.1016/0092-8674(82)90087-3. [DOI] [PubMed] [Google Scholar]
- Roth R. A., Mesirow M. L., Cassell D. J., Yokono K., Baba S. Characterization of an insulin degrading enzyme from cultured human lymphocytes. Diabetes Res Clin Pract. 1985 Mar;1(1):31–39. doi: 10.1016/s0168-8227(85)80026-7. [DOI] [PubMed] [Google Scholar]
- Roth R. A., Mesirow M. L. Production and characterization of a monoclonal antibody to rat liver thiol: protein-disulfide oxidoreductase/glutathione-insulin transhydrogenase. Biochim Biophys Acta. 1984 Jul 31;788(2):189–192. doi: 10.1016/0167-4838(84)90261-9. [DOI] [PubMed] [Google Scholar]
- Shii K., Baba S., Yokono K., Roth R. A. Covalent linkage of 125I-insulin to a cytosolic insulin-degrading enzyme. J Biol Chem. 1985 Jun 10;260(11):6503–6506. [PubMed] [Google Scholar]
- Shroyer L. A., Varandani P. T. Purification and characterization of a rat liver cytosol neutral thiol peptidase that degrades glucagon, insulin, and isolated insulin A and B chains. Arch Biochem Biophys. 1985 Jan;236(1):205–219. doi: 10.1016/0003-9861(85)90620-4. [DOI] [PubMed] [Google Scholar]
- Shulman M., Wilde C. D., Köhler G. A better cell line for making hybridomas secreting specific antibodies. Nature. 1978 Nov 16;276(5685):269–270. doi: 10.1038/276269a0. [DOI] [PubMed] [Google Scholar]
- Steiner D. F. The Banting Memorial Lecture 1976. Insulin today. Diabetes. 1977 Apr;26(4):322–340. doi: 10.2337/diab.26.4.322. [DOI] [PubMed] [Google Scholar]
- Suzuki K., Kono T. Internalization and degradation of fat cell-bound insulin. Separation and partial characterization of subcellular vesicles associated with iodoinsulin. J Biol Chem. 1979 Oct 10;254(19):9786–9794. [PubMed] [Google Scholar]
- Terris S., Steiner D. F. Binding and degradation of 125I-insulin by rat hepatocytes. J Biol Chem. 1975 Nov 10;250(21):8389–8398. [PubMed] [Google Scholar]
- Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ward W. F., Moss A. L. Effects of lysosomal inhibitors on 125I-insulin and 125I-asialofetuin degradation by the isolated, perfused rat liver and isolated rat hepatocytes. Diabetes. 1985 May;34(5):446–451. doi: 10.2337/diab.34.5.446. [DOI] [PubMed] [Google Scholar]
- Yokono K., Imamura Y., Shii K., Sakai H., Baba S. Purification and characterization of insulin-degrading enzyme from pig skeletal muscle. Endocrinology. 1981 Apr;108(4):1527–1532. doi: 10.1210/endo-108-4-1527. [DOI] [PubMed] [Google Scholar]
- de StGroth S. F., Scheidegger D. Production of monoclonal antibodies: strategy and tactics. J Immunol Methods. 1980;35(1-2):1–21. doi: 10.1016/0022-1759(80)90146-5. [DOI] [PubMed] [Google Scholar]

