Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1986 Jun;83(12):4282–4286. doi: 10.1073/pnas.83.12.4282

Electron-transport-driven proton pumps display nonhyperbolic kinetics: Simulation of the steady-state kinetics of cytochrome c oxidase

Peter Brzezinski 1, Bo G Malmström 1
PMCID: PMC323716  PMID: 16593710

Abstract

A reaction cycle for electron-transportdriven proton pumps is proposed. It includes two distinct conformational states of the pump protein in which the primary electron acceptor has different reduction potentials. This has as an unavoidable consequence that the steady-state rate equation for the catalytic reaction driving the pump is nonhyperbolic. The model can be used to simulate experimental results for the kinetics of cytochrome oxidase (EC 1.9.3.1) in a wide range of experimental conditions (ionic strength, pH, temperature). It is thus not necessary to invoke more than one binding site for cytochrome c to account for the biphasic response of the oxidase activity to the concentration of this substrate.

Keywords: active transport, enzyme kinetics, linked functions, redox interaction, protein conformation

Full text

PDF
4282

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ainslie G. R., Jr, Shill J. P., Neet K. E. Transients and cooperativity. A slow transition model for relating transients and cooperative kinetics of enzymes. J Biol Chem. 1972 Nov 10;247(21):7088–7096. [PubMed] [Google Scholar]
  2. Antalis T. M., Palmer G. Kinetic characterization of the interaction between cytochrome oxidase and cytochrome c. J Biol Chem. 1982 Jun 10;257(11):6194–6206. [PubMed] [Google Scholar]
  3. Brooks S. P., Nicholls P. Anion and ionic strength effects upon the oxidation of cytochrome c by cytochrome c oxidase. Biochim Biophys Acta. 1982 Apr 19;680(1):33–43. doi: 10.1016/0005-2728(82)90314-0. [DOI] [PubMed] [Google Scholar]
  4. Brzezinski P., Malmström B. G. The reduction of cytochrome c oxidase by carbon monoxide. FEBS Lett. 1985 Jul 22;187(1):111–114. doi: 10.1016/0014-5793(85)81224-2. [DOI] [PubMed] [Google Scholar]
  5. Brzezinski P., Thörnström P. E., Malmström B. G. The rate-limiting step and nonhyperbolic kinetics in the oxidation of ferrocytochrome c catalyzed by cytochrome c oxidase. FEBS Lett. 1986 Jan 1;194(1):1–5. doi: 10.1016/0014-5793(86)80040-0. [DOI] [PubMed] [Google Scholar]
  6. Ellis W. R., Jr, Wang H., Blair D. F., Gray H. B., Chan S. I. Spectroelectrochemical study of the cytochrome a site in carbon monoxide inhibited cytochrome c oxidase. Biochemistry. 1986 Jan 14;25(1):161–167. doi: 10.1021/bi00349a023. [DOI] [PubMed] [Google Scholar]
  7. Errede B., Haight G. P., Jr, Kamen M. D. Oxidation of ferrocytochrome c by mitochondrial cytochrome c oxidase. Proc Natl Acad Sci U S A. 1976 Jan;73(1):113–117. doi: 10.1073/pnas.73.1.113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Ferguson-Miller S., Brautigan D. L., Margoliash E. Correlation of the kinetics of electron transfer activity of various eukaryotic cytochromes c with binding to mitochondrial cytochrome c oxidase. J Biol Chem. 1976 Feb 25;251(4):1104–1115. [PubMed] [Google Scholar]
  9. Jensen P., Wilson M. T., Aasa R., Malmström B. G. Cyanide inhibition of cytochrome c oxidase. A rapid-freeze e.p.r. investigation. Biochem J. 1984 Dec 15;224(3):829–837. doi: 10.1042/bj2240829. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kojima N., Palmer G. Further characterization of the potentiometric behavior of cytochrome oxidase. Cytochrome alpha stays low spin during oxidation and reduction. J Biol Chem. 1983 Dec 25;258(24):14908–14913. [PubMed] [Google Scholar]
  11. Malmström B. G., Andréasson L. E. The steady-state rate equation for cytochrome c oxidase based on a minimal kinetic scheme. J Inorg Biochem. 1985 Mar-Apr;23(3-4):233–242. doi: 10.1016/0162-0134(85)85030-3. [DOI] [PubMed] [Google Scholar]
  12. Malmström B. G. Hypothesis. Cytochrome c oxidase as a proton pump. A transition-state mechanism. Biochim Biophys Acta. 1985 Apr 8;811(1):1–12. [PubMed] [Google Scholar]
  13. Mitchell P., Mitchell R., Moody A. J., West I. C., Baum H., Wrigglesworth J. M. Chemiosmotic coupling in cytochrome oxidase. Possible protonmotive O loop and O cycle mechanisms. FEBS Lett. 1985 Aug 19;188(1):1–7. doi: 10.1016/0014-5793(85)80863-2. [DOI] [PubMed] [Google Scholar]
  14. Nicholls P. Cytochrome c binding to enzymes and membranes. Biochim Biophys Acta. 1974 Dec 30;346(3-4):261–310. doi: 10.1016/0304-4173(74)90003-2. [DOI] [PubMed] [Google Scholar]
  15. Petersen L. C., Andréasson L. E. The reaction between oxidized cytochrome c and reduced cytochrome c oxidase. FEBS Lett. 1976 Jul 1;66(1):52–57. doi: 10.1016/0014-5793(76)80583-2. [DOI] [PubMed] [Google Scholar]
  16. Reynolds J. A., Johnson E. A., Tanford C. Application of the principle of linked functions to ATP-driven ion pumps: kinetics of activation by ATP. Proc Natl Acad Sci U S A. 1985 Jun;82(11):3658–3661. doi: 10.1073/pnas.82.11.3658. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Sinjorgo K. M., Meijling J. H., Muijsers A. O. The concept of high- and low-affinity reactions in bovine cytochrome c oxidase steady-state kinetics. Biochim Biophys Acta. 1984 Oct 26;767(1):48–56. doi: 10.1016/0005-2728(84)90078-1. [DOI] [PubMed] [Google Scholar]
  18. Speck S. H., Dye D., Margoliash E. Single catalytic site model for the oxidation of ferrocytochrome c by mitochondrial cytochrome c oxidase. Proc Natl Acad Sci U S A. 1984 Jan;81(2):347–351. doi: 10.1073/pnas.81.2.347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Tanford C. Mechanism of free energy coupling in active transport. Annu Rev Biochem. 1983;52:379–409. doi: 10.1146/annurev.bi.52.070183.002115. [DOI] [PubMed] [Google Scholar]
  20. Veerman E. C., Wilms J., Dekker H. L., Muijsers A. O., van Buuren K. J., van Gelder B. F., Osheroff N., Speck S. H., Margoliash E. The presteady state reaction of chemically modified cytochromes c with cytochrome oxidase. J Biol Chem. 1983 May 10;258(9):5739–5745. [PubMed] [Google Scholar]
  21. Wikström M., Krab K., Saraste M. Proton-translocating cytochrome complexes. Annu Rev Biochem. 1981;50:623–655. doi: 10.1146/annurev.bi.50.070181.003203. [DOI] [PubMed] [Google Scholar]
  22. Wilms J., Dekker H. L., Boelens R., van Gelder B. F. The effect of pH and ionic strength on the pre-steady-state reaction of cytochrome c and cytochrome aa3. Biochim Biophys Acta. 1981 Aug 12;637(1):168–176. doi: 10.1016/0005-2728(81)90223-1. [DOI] [PubMed] [Google Scholar]
  23. Wilms J., van Rijn J. L., Van Gelder B. F. The effect of pH and ionic strength on the steady-state activity of isolated cytochrome C oxidase. Biochim Biophys Acta. 1980 Nov 5;593(1):17–23. doi: 10.1016/0005-2728(80)90004-3. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES